

Geologie > > Zink

Zink

Geogene Grundgehalte für Zink

Zink (Zn) ist zu 70 mg/kg in der Erdkruste vertreten. Es steht an 24. Stelle der Elementhäufigkeiten und ist damit häufiger als Kupfer oder Blei.

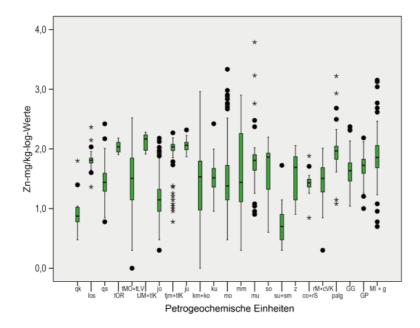
Wichtigstes Zinkmineral ist Zinkblende (Sphalerit, ZnS), erwähnenswert für den Verwitterungsbereich sind Smithsonit ($ZnCO_3$) und Hemimorphit ($Zn_4Si_2O_7(OH)_2 \cdot H_2O$).

Der flächengewichtete Median der oberflächennahen Gesteine Baden-Württembergs beträgt 42 mg/kg, was eine Abreicherung baden-württembergischer Gesteine an Zink gegenüber dem CLARKE-Wert darstellt.

Die P 90-Werte für Zink in Gesteinen Baden-Württembergs schwanken deutlich zwischen 14 und 418 mg/kg.

Sehr niedrige Werte (P 90: < 60 mg/kg) weisen quartäre Süßwasserkalke, Gesteine des Oberjuras, des Mittleren und Unteren Buntsandsteins, Karbon- und Rotliegend-Sedimente und saure Permokarbon-Magmatite auf.

Niedrige Werte (P 90: > 60–90 mg/kg) treten in Lösssedimenten, Quartärschichten (Kiese u. Sande), im gesamten Keuper, im Unteren Muschelkalk, Zechstein und in den variskischen Intrusiva auf.


Erhöhte Werte (P 90: > 90–120 mg/kg) finden sich im Tertiär des Molassebeckens, im Oberen Muschelkalk und im Oberen Buntsandstein sowie in basisch-intermediären Permokarbon-Magmatiten.

Hohe Werte (P 90: > 120–180 mg/kg) wurden im Tertiär des Schichtstufenlandes, in tertiären Magmatiten und Impaktgesteinen, im Mittel- und Unterjura, im gefalteten Paläozoikum und in Migmatiten und Gneisen festgestellt.

Sehr hohe Werte (P 90: > 180 mg/kg) finden sich im Mittleren Muschelkalk mit 418 mg/kg.

Zink ist chalkophil, d. h. es bildet wie Kupfer und Blei bevorzugt Sulfide und kommt gemeinsam mit diesen Elementen in etwa vergleichbaren stratigraphischen Horizonten vor. Hohe Einzelwerte treten im Muschelkalk auf, wo Konzentrationen von 0,2 und 0,6 % erreicht werden. Im Oberen Muschelkalk ist ein Teil der hohen Gehalte auf metasomatische, von Kluftsystemen entlang des Rheingrabenrands ausgehende Vererzungen rückführbar. Im Mittleren und im Unteren Muschelkalk liegen den erhöhten Zinkgehalten stratiforme (schichtgebundene) geogene Anreicherungen zu Grunde. Sehr hohe Einzelwerte und ein gleichzeitig relativ niedriger 90. Perzentilwert weisen auf eine starke Konzentration des Zinks in eng begrenzten, diskreten Einzelhorizonten hin.

Mit erhöhten Gehalten an Zink gehen fast immer auch erhöhte Cadmium-Gehalte einher, da Zink und Cadmium sehr ähnliche chemische und physikalische Eigenschaften aufweisen. Natürliche Zinkblende enthält bis zu 0,5 % Cadmium.

Boxplots für Zink (Zn); Gehalte in mg/kg

Statistische Kennwerte für Zink (Zn, in mg/kg) für die verschiedenen petrogeochemischen Einheiten in Baden-Württemberg:

Geochemische Einheit	Kürzel	Anzahl (n)	Minimum	Maximum	Mittelwert	Std. Abw.	P 90	Median (P 50)	
Quartär									
Junger Süßwasserkalk	qk	16	3	63	12	15	18	7,5	
Lösssediment	los	40	23	231	69	32	89	65	
Quartärschichten (Kiese u. Sande)	qs	148	6	263	37	31	74	28	
Tertiär									
Tertiär des Schichtstufenlandes	tOR	10	80	152	112	25	144	109	
Tertiär des Molassebeckens	tMO+tLV	134	1	330	50	56	113	32	
Tertiäre Magmatite und Impaktgesteine	tJM+tIK	9	82	191	135	43	177	147	
Jura									
Oberjura	jo	1152	2	151	18	15	32	14	
Mitteljura	jm	114	6	186	100	35	130	108	
Unterjura	ju	125	74	208	116	23	149	115	
Trias									
Mittel- und Oberkeuper	km+ko	604	1	912	42	52	84	34	
Unterkeuper	ku	24	9	264	47	51	84	33	
Oberer Muschelkalk	mo	183	3	2158	81	214	120	24	
Mittlerer Muschelkalk	mm	104	2	797	125	180	418	28	
Unterer Muschelkalk	mu	110	8	6130	137	600	88	64	
Oberer Buntsandstein	so	56	4	158	63	38	108	73	
Unterer und Mittlerer Buntsandstein	su+sm	29	2	53	8	9	14	5	
Perm-Oberkarbon									
Zechstein	Z	18	8	114	49	33	85	50	
Karbon- und Rotliegend-Sedimente	co+rS	29	7	76	28	12	34	27	
Saure Permokarbon-Magmatite	rM+cVK	44	2	103	36	23	59	32	
Nichtkristallines Grundgebirge									
Gefaltetes Paläozoikum	palg	61	12	1657	139	230	171	92	
Kristallines Grundgebirge									
Basisch-intermediäre Permokarbon- Magmatite	GG	121	11	236	52	37	95	43	
Variskische Intrusiva	GP	211	10	153	56	25	87	53	
Migmatite und Gneise	MI+gn	136	5	1420	115	194	142	72	
Alle Einheiten		3478	1	6130	Flächen	Flächengewichteter Median			

Externe Lexika

WIKIPEDIA

• Zink

Baden-Württemberg REGIERUNGSPRÄSIDIUM FREIBURG

Datenschutz

Cookie-Einstellungen

Barrierefreiheit

Quell-URL (zuletzt geändert am 02.02.23 - 13:24):https://lgrbwissen.lgrb-bw.de/geologie/geogene-grundgehalte-hintergrundwerte-den-petrogeochemischen-einheiten-baden-wuerttemberg/zink