

Geologie >> Vanadium

Vanadium

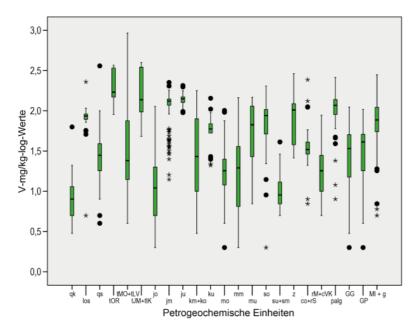
Geogene Grundgehalte für Vanadium

Vanadium (V) ist zu 120 mg/kg in der kontinentalen Erdkruste vertreten und steht seiner Häufigkeit nach an 23. Stelle zwischen Strontium und Zink.

Wichtige Vanadiumminerale sind Vanadinit ($Pb_5(VO_4)_3CI$), Descloizit ($Pb(Zn,Cu)[OH|VO_4]$), Carnotit ($K_2(UO_2)_2(VO_4)_2 \cdot 3 H_2O$) und das Sulfid Patronit (VS_4). Mengenmäßig bedeutsamer und wichtiger Rohstoff für die Vanadiumgewinnung sind Eisenerze wie Titanomagnetit. Ihr Vanadiumgehalt liegt typisch bei 0,3 bis 0,8 %. Die Bauwürdigkeitsgrenze für Vanadium allein liegt bei 1 % V. Durch weitere Wertminerale (Fe, Cr, U, Pb) verschiebt sich diese Grenze auf 0,02 %. Größere Mengen an Vanadium sind auch in Kohlen und Erdöl gebunden. Bei der Verbrennung von 1000 t Rohöl wird ca. 1 t V_2O_5 frei (Alloway, 1999).

Der flächengewichtete Median für die oberflächennahen Gesteine Baden-Württembergs beträgt 46 mg/kg V. Für die Gesteine Baden-Württembergs zeigt sich somit eine deutliche Abreicherung des medianen Vanadiumgehalts gegenüber dem CLARKE-Wert für die obere Erdkruste. Hinsichtlich der für deutsche Kulturböden angegebenen Hintergrundwerte (10–100 mg/kg; Schaaf, 1982) besteht gute Übereinstimmung der Gehalte. Untersuchungen für die Erstellung des Bodenzustandberichts Kehl ergaben Vanadiumgehalte von 20–105 mg/kg (UM, 1995a).

Die P 90-Werte für Vanadium der differenzierten petrogeochemischen Einheiten liegen zwischen 18 und 359 mg/kg.


Niedrige Werte (P 90: < 90 mg/kg) finden sich in quartären Süßwasserkalken, Quartärschichten (Kiese u. Sande), im Oberjura, im Unterkeuper, im Oberen und Mittleren Muschelkalk, im Mittleren und Unteren Buntsandstein, in sauren Permokarbon-Magmatiten, in basisch-intermediären Permokarbon-Magmatiten und in variskischen Intrusiva.

Erhöhte Werte (P 90: > 90–120 mg/kg) treten in Lösssedimenten, im Tertiär des Molassebeckens, im Ober- und Mittelkeuper, im Oberen Buntsandstein und in Karbon- und Rotliegend-Sedimenten auf.

Hohe Werte (P 90: > 120–180 mg/kg) wurden im Mittel- und Unterjura, im Unteren Muschelkalk, im Zechstein, im gefalteten Paläozoikum sowie in Migmatiten und Gneisen angetroffen.

Sehr hohe Werte (P 90: > 180 mg/kg) weisen das Tertiär des Schichtstufenlandes, tertiäre Magmatite und Impaktgesteine auf.

Vanadium (III) weist einen ähnlichen Ionenradius wie Fe (III) auf und ersetzt letzteres in vielen Eisenmineralen. Diesem Umstand entsprechend tritt Vanadium in eisenreichen, dunklen, basischen Magmatiten (z. B. tertiäre Magmatite) häufiger auf als in Hellen, Sauren (Quarzporphyr und Granite). Tonreiche Sedimente liegen etwa dazwischen. Es gibt Hinweise, dass der Vanadiumgehalt mit dem Tonanteil steigt. Reine Kalke und Sandsteine sind arm an Vanadium.

Boxplots für Vanadium (V); Gehalte in mg/kg

Statistische Kennwerte für Vanadium (V, in mg/kg) für die verschiedenen petrogeochemischen Einheiten in Baden-Württemberg:

Geochemische Einheit	Kürzel	Anzahl (n)	Minimum	Maximum	Mittelwert	Std. Abw.	P 90	Median (P 50)	
Quartär									
Junger Süßwasserkalk	qk	16	3	63	11,9	14,4	18	8	
Lösssediment	los	40	5	229	85,9	28,8	100	86	
Quartärschichten (Kiese u. Sande)	qs	149	4	361	36,4	36,0	78	28	
Tertiär									
Tertiär des schichtstufenlandes	tOR	10	90	368	219,5	108,5	349	171	
Tertiär des Molassebeckens	tMO+tLV	134	4	925	64,1	136,3	104	24	
Tertiäre Magmatite und Impaktgesteine	tJM+tIK	9	48	398	214,3	138,4	359	137	
Jura									
Oberjura	jo	1107	2	113	15,9	16,4	39	11	
Mitteljura	jm	131	14	225	118,7	40,2	147	132	
Unterjura	ju	125	95	206	141,6	20,0	172	141	
Trias									
Mittel- und Oberkeuper	km+ko	591	3	178	44,2	38,7	99	27	
Unterkeuper	ku	24	21	143	60,5	27,6	90	60	
Oberer Muschelkalk	mo	183	2	101	22,3	16,5	44	18	
Mittlerer Muschelkalk	mm	104	2	145	27,0	27,1	61	20	
Unterer Muschelkalk	mu	110	7	147	71,4	44,9	131	67	
Oberer Buntsandstein	SO	56	2	203	78,9	38,8	112	87	
Unterer und Mittlerer Buntsandstein	su+sm	29	5	41	11,8	7,8	18	9	
Perm-Oberkarbon									
Zechstein	Z	16	26	290	98,3	68,4	160	103	
Karbon- und Rotliegend-Sedimente	co+rS	32	7	243	47,0	45,1	106	33	
Saure Permokarbon-Magmatite	rM+cVK	49	5	88	23,3	18,7	46	18	
Nichtkristallines Grundgebirge									
Gefaltetes Paläozoikum	palg	61	8	260	115,6	49,7	167	117	
Kristallines Grundgebirge									
Basisch-intermediäre Permokarbon- Magmatite	GG	116	2	111	38,8	27,5	82	34	
Variskische Intrusiva	GP	199	2	104	39,5	23,5	78	41	
Migmatite und Gneise	MI+gn	131	5	280	87,6	55,0	147	77	
Alle Einheiten		3422	2	925	Flächen	Flächengewichteter Median			

Externe Lexika

WIKIPEDIA

• <u>Vanadium</u>

Literatur

- Alloway, B. (1999). Schwermetalle in Böden; Analytik, Konzentrationen, Wechselwirkungen. 540 S., Berlin, Heidelberg (Springer).
- Schaaf, R. (1982). *Luftbelastung durch Metallverbindungen aus Produkten* Texte 38/1982, Berlin (Umweltbundesamt).
- UM Umweltministerium Baden-Württemberg (1995a). Bodenzustandsbericht Kehl Schadstoffgehalte der Böden. 58 S., Karlsruhe (Landesanstalt für Umweltschutz Baden-Württemberg, Gesellschaft für Umweltmessungen und Umwelterhebungen mbH).

Datenschutz

Cookie-Einstellungen

Barrierefreiheit

Quell-URL (zuletzt geändert am 02.02.23 - 13:24):https://lgrbwissen.lgrb-bw.de/geologie/geogene-grundgehalte-hintergrundwerte-den-petrogeochemischen-einheiten-baden-wuerttemberg/vanadium?utm_source=chatgpt.com