

Geologie → Uran

Uran

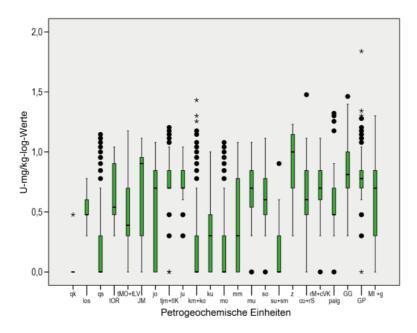
Geogene Grundgehalte für Uran

Uran (U) ist im Mittel zu 2,7 mg/kg in der Erdkruste vorhanden. Es steht an 54. Stelle der Elemente in der oberen kontinentalen Erdkruste. Uran liegt in der Natur nie in gediegener Form vor, sondern stets in sauerstoffhaltigen Mineralen, wie z. B. in Pechblende (Uraninit, UO_2), Coffinit ($U(SiO_4)_{1-x}(OH)_{4x}$) oder Carnotit ($V_2(UO_2)_2(VO_4)_2 \cdot 3 H_2O$). Es gibt mehr als 200 verschiedene Uranminerale.

Der flächengewichtete Median der oberflächennahen Gesteine Baden-Württembergs beträgt 2,8 mg/kg. Der Urangehalt der Gesteine Baden-Württembergs entspricht also ziemlich genau dem CLARKE-Wert für die obere Kruste. Die P 90-Werte für Uran in Gesteinen Baden-Württembergs liegen zwischen 1 und 14 mg/kg.

Niedrige Gehalte (0–6 mg/kg) finden sich in quartären Süßwasserkalken und Lösssedimenten, im Tertiär des Molassebeckens, in den Gesteinen des Ober- und Mittelkeupers, im Oberen Muschelkalk und im Mittleren und Unteren Buntsandstein.

Erhöhte Gehalte (> 6–8 mg/kg) treten in Quartärschichten (Kiese u. Sande), im Oberjura, im Unterkeuper, im Mittleren Muschelkalk und im gefalteten Paläozoikum auf.


Hohe Gehalte (> 8–10 mg/kg) wurden im Tertiär des Schichtstufenlandes, in tertiären Magmatiten und Impaktgesteinen, im Unterjura, in den Gesteinen des Unteren Muschelkalks, des Oberen Buntsandsteins, in sauren Permokarbon-Magmatiten und in variskischen Intrusiva festgestellt.

Sehr hohe Gehalte (> 10 mg/kg) weisen die Gesteine des Mitteljuras und Zechsteins sowie basisch-intermediäre Permokarbon-Magmatite und Migmatite bis Gneise auf.

Hohe Maximalwerte treten im Mittelkeuper (27 mg/kg) (Einheit Löwenstein-Formation bzw. "Stubensandstein"), in den Karbon- und Rotliegend-Sedimenten (30 mg/kg), in basisch-intermediären Permokarbon-Magmatiten (Ganggesteine) (29 mg/kg) und ganz besonders in den variskischen Intrusiva (Granite) (69 mg/kg) auf und können hier auf bekannte Anreicherungen zurückgeführt werden.

Uran gilt als lithophil, weshalb es sich vorwiegend in silikatreichen Schmelzen anreichert; Magmatite wie Granite und Rhyolithe weisen deshalb die höchsten Urankonzentrationen auf. Uran wird in Kristallingesteinen nicht nur in Pechblende, sondern auch in akzessorischen Mineralen, wie Zirkon oder Monazit, eingebaut. Für die Bindung von Uran in Sedimentgesteinen sind andere Prozesse maßgebend:

- Aufgrund der geringen Verwitterungsbeständigkeit von Pechblende wird Uran zunächst zu UO₃ aufoxidiert, um schließlich durch Aufnahme von Fremdionen und H₂O leicht lösliche Hydroxide, Karbonate und Sulfate zu bilden. Später können auch schwerer lösliche Verbindungen entstehen wie Phosphate, Arsenate, Vanadate und Silikate.
- Die Anreicherung von Uran kann durch die vorliegenden Redoxbedingungen kontrolliert werden. Herrschen oxidierende Bedingungen vor, so ist Uran in wässrigen Lösungen relativ mobil. Bei reduzierenden Bedingungen ist Uran jedoch schwer löslich, wenig mobil und lagert sich bevorzugt an organisches Material an. Lokale Urananreicherungen sind deshalb oft an kohlige Substanz gebunden, wie z. B. an der Basis von Sandsteinen im Mittelkeuper.

Boxplots für Uran (U); Gehalte in mg/kg

Statistische Kennwerte für Uran (U, in mg/kg) für die verschiedenen petrogeochemischen Einheiten in Baden-Württemberg:

Geochemische Einheit	Kürzel	Anzahl (n)	Minimum	Maximum	Mittelwert	Std. Abw.	P 90	Median (P 50)	
Quartär									
Junger Süßwasserkalk	qk	16	1	3	1,1	0,5	1	1	
Lösssediment	los	45	1	9	3,9	1,4	5	4	
Quartärschichten (Kiese u. Sande)	qs	154	1	13	2,7	2,4	6	2	
Tertiär									
Tertiär des Schichtstufenlandes	tOR	59	1	18	5,2	2,9	8	6	
Tertiär des Molassebeckens	tMO+tLV	139	1	15	3,3	2,4	6	3	
Tertiäre Magmatite und Impaktgesteine	tJM+tIK	15	1	30	8,6	6,8	13	8	
Jura									
Oberjura	jo	1027	1	12	3,8	2,8	8	4	
Mitteljura	jm	238	1	16	4,2	3,3	9	3	
Unterjura	ju	206	1	22	5,7	2,9	9	5	
Trias									
Mittel- und Oberkeuper	km+ko	474	1	30	2,4	2,9	5	1	
Unterkeuper	ku	47	1	10	3,7	2,3	7	3	
Oberer Muschelkalk	mo	317	1	12	1,9	1,9	3	1	
Mittlerer Muschelkalk	mm	117	1	12	2,9	2,3	6	2	
Unterer Muschelkalk	mu	159	1	12	3,8	2,0	6	4	
Oberer Buntsandstein	so	69	1	13	4,5	2,8	9	4	
Unterer und Mittlerer Buntsandstein	su+sm	150	1	12	2,7	2,0	5	2	
Perm-Oberkarbon									
Zechstein	Z	25	1	17	6,9	5,4	14	6	
Karbon- und Rotliegend-Sedimente	co+rS	50	1	30	6,4	5,4	13	5	
Saure Permokarbon-Magmatite	rM+cVK	214	1	25	7,5	3,9	12	6	
Nichtkristallines Grundgebirge									
Gefaltetes Paläozoikum	palg	72	1	22	5,6	4,3	10	4	
Kristallines Grundgebirge									
Basisch-intermediäre Permokarbon- Magmatite	GG	30	3	29	12,8	6,7	22	12	
Variskische Intrusiva	GP	319	1	69	7,1	5,3	13	6	
Migmatite und Gneise	MI+gn	440	1	20	6,6	3,7	11	6	
Alle Einheiten		4382	1	69	Flächen	Flächengewichteter Median			

Externe Lexika

WIKIPEDIA

• <u>Uran</u>

Baden-Württemberg REGIERUNGSPRÄSIDIUM FREIBURG

Datenschutz

Cookie-Einstellungen

Barrierefreiheit

Quell-URL (zuletzt geändert am 02.02.23 - 13:23):https://lgrbwissen.lgrb-bw.de/geologie/geogene-grundgehalte-hintergrundwerte-den-petrogeochemischen-einheiten-baden-wuerttemberg/uran