

Geologie > > Silizium

Silizium

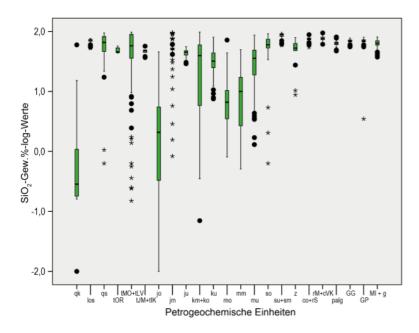
Geogene Grundgehalte für Siliziumoxid

Silizium (als SiO₂) ist mit einem Anteil von 28,2 % nach Sauerstoff das zweithäufigste Element in der kontinentalen Erdkruste. Elementar kommt Silizium in der Natur nicht vor, wegen seines lithophilen Charakters tritt es in Gesteinen stets vierwertig als Siliziumdioxid (Quarz, SiO₂) oder in Form von Silikaten auf. Silikate bestehen aus SiO₄-Tetraedern, in denen ein Siliziumatom von vier Sauerstoffatomen umgeben ist. Zum Ladungsausgleich werden andere Metall-Kationen eingebaut. In Alumosilikaten ist ein Teil des Siliziums durch Aluminium substituiert. Quarz und Silikate machen zusammen etwa 90 % der Erdkruste aus. Die mit Abstand häufigsten Silikate sind die Feldspäte, weitere Wichtige sind Glimmer, Tonminerale, Amphibole und Pyroxene.

Der flächengewichtete Median für die oberflächennahen Gesteine Baden-Württembergs beträgt 48,57 % SiO₂, entsprechend 22,7 % Si. Für die baden-württembergischen Gesteine zeigt sich damit eine Abreicherung ihres Gehalts an Silizium gegenüber dem CLARKE-Wert für die obere Erdkruste.

Die P 90-Werte für SiO_2 in den dieser Studie zu Grunde liegenden petrogeochemischen Einheiten streuen sehr deutlich zwischen 11,5 % und 94,16 %.

Niedrige Werte (P 90: < 45 %) finden sich in quartären Süßwasserkalken, im Oberjura, im Oberen und im Mittleren Muschelkalk


Erhöhte Werte (P 90: > 45–65 %) weisen Tertiärschichten des Schichtstufenlandes, tertiäre Magmatite und Impaktgesteine , Unterjura und Unterkeuper auf.

Hohe Werte (P 90: > 65–80 %) treten in Lösssedimenten, im Mitteljura, Unteren Muschelkalk, Zechstein, in Karbon- und Rotliegend-Sedimenten, im gefalteten Paläozoikum, in basisch-intermediären Permokarbon-Magmatiten, variskischen Intrusiva sowie in Migmatiten und Gneisen auf.

Sehr hohe Werte (P 90: > 80 %) wurden in Quartärschichten (Kiese u. Sande), im Tertiär des Molassebeckens, im Oberund Mittelkeuper, im gesamten Buntsandstein und in den sauren Permokarbon-Magmatiten (insbesondere in Quarzporphyren) angetroffen.

Die niedrigsten 90. Perzentilwerte treten in den weitgehend reinen Kalksteinserien auf. Kleinere SiO₂-Gehalte gehen hier häufig auf biogene SiO₂-Anreicherungen durch Kieselalgen, Schwämme oder Radiolarien zurück. In Sedimenten korrelieren SiO₂-Gehalte mit dem Ton- und Sandanteil. Die höchsten SiO₂-Gehalte weisen (Quarz-)Sande und -Sandsteine auf, beispielsweise guartäre Sande, Molassesandsteine, Keupersandsteine und Buntsandstein.

Magmatische Gesteine werden u. a. durch ihren SiO_2 -Gehalt klassifiziert: Gesteine mit 45-52% SiO_2 werden als basisch, mit niedrigerem SiO_2 -Gehalt als ultrabasisch, mit höherem Gehalt als intermediär und über 65% SiO_2 als sauer bezeichnet. Der saure Rotliegend-Magmatismus hebt sich durch seinen Reichtum an SiO_2 vom basischen tertiären Vulkanismus deutlich ab. In basischen und ultrabasischen Gesteinen kann alles SiO_2 in Silikaten gebunden sein, es kommt dann nicht mehr zur Bildung von freiem Quarz. Im Gegensatz zu Quarz verwittern Silikate unter Oberflächenbedingungen in unterschiedlich starkem Maße. Für die Bodenbildung und dessen Anreicherung mit Nährstoffen besonders wichtig ist der Vorgang der wässrigen Lösung (Hydrolyse) von Feldspäten, bei der es zur Neubildung von Tonmineralen und zur Freisetzung von pflanzenverfügbaren Nährstoff-Kationen kommt. In grober Näherung ist deshalb der SiO_2 -Gehalt eines Gesteins ein Anzeiger für den Nährstoffgehalt daraus hervorgehender Böden: Je weniger SiO_2 (= Quarzgehalt), desto mehr Silikate (auch Karbonate u. a.), desto höher der Nährstoffgehalt des künftigen Bodens.

Boxplots für Siliziumoxid (SiO₂); Gehalte in %

Statistische Kennwerte für Silizium (SiO₂, in%) für die verschiedenen petrogeochemischen Einheiten in Baden-Württemberg:

Geochemische Einheit	Kürzel	Anzahl (n)	Minimum	Maximum	Mittelwert	Std. Abw.	P 90	Median (P 50)
Quartär								
Junger Süßwasserkalk	qk	16	0,01	59,79	5,51	15,04	11,68	0,29
Lösssediment	los	40	52,65	76,8	69,71	6,22	74,41	71,89
Quartärschichten (Kiese u. Sande)	qs	149	0,63	94,36	64,00	19,61	87,91	65,60
Tertiär								
Tertiär des Schichtstufenlandes	tOR	10	43,59	57,4	48,43	5,12	53,94	45,66
Tertiär des Molassebeckens	tMO+tLV	134	0,15	97,6	56,41	30,87	92,81	57,55
Tertiäre Magmatite und Impaktgesteine	tJM+tIK	10	36,75	56,82	46,46	5,76	49,97	47,93
Jura								
Oberjura	jo	1186	0,01	45,66	4,02	5,17	11,50	2,09
Mitteljura	jm	133	0,83	95,58	53,49	17,37	76,59	50,89
Unterjura	ju	125	28,96	55,71	43,88	5,29	48,94	45,10
Trias								
Mittel- und Oberkeuper	km+ko	616	0,07	97,83	38,66	30,15	86,55	39,44
Unterkeuper	ku	25	7,52	80,36	34,64	18,92	51,87	32,06
Oberer Muschelkalk	mo	223	0,81	71,88	8,98	8,59	19,17	6,61
Mittlerer Muschelkalk	mm	109	0,51	49,84	11,80	10,49	25,76	10,01
Unterer Muschelkalk	mu	117	1,3	86,76	36,30	21,91	70,31	35,67
Oberer Buntsandstein	SO	64	0,63	91,79	60,22	19,37	84,91	59,94
Unterer und Mittlerer Buntsandstein	su+sm	111	58,86	96,6	86,42	8,04	94,16	88,54
Perm-Oberkarbon								
Zechstein	Z	15	8,76	78,85	50,48	20,54	70,50	52,79
Karbon- und Rotliegend-Sedimente	co+rS	29	54,28	88,42	73,77	7,32	79,35	75,14
Saure Permokarbon-Magmatite	rM+cVK	50	61,17	94,45	76,62	7,24	85,75	76,21
Nichtkristallines Grundgebirge								
Gefaltetes Paläozoikum	palg	61	47,38	80,86	63,48	5,63	68,06	63,94
Kristallines Grundgebirge								
Basisch-intermediäre Permokarbon-								
Magmatite	GG	123	55,56	77,71	68,82	4,43	73,83	69,70
Variskische Intrusiva	GP	255	3,49	80,1	69,07	5,70	73,84	69,44
Migmatite und Gneise	MI+gn	137	37,43	80,97	63,94	7,80	74,15	63,82 48,57
Alle Einheiten		3738	0,01	97,83	Flächen	Flächengewichteter Median		

Externe Lexika

WIKIPEDIA

• Silizium

Datenschutz

Cookie-Einstellungen

Barrierefreiheit

Quell-URL (zuletzt geändert am 02.02.23 - 13:22):https://lgrbwissen.lgrb-bw.de/geologie/geogene-grundgehalte-hintergrundwerte-den-petrogeochemischen-einheiten-baden-wuerttemberg/silizium