

Geologie > > Blei

Blei

Geogene Grundgehalte für Blei

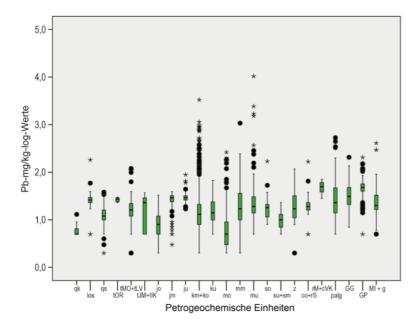
Blei (Pb) ist mit einer Häufigkeit von 14 mg/kg in der oberen kontinentalen Kruste vertreten und damit deutlich seltener als Kupfer, Zink, Chrom oder Nickel. Nach seiner Elementhäufigkeit steht es an 36. Stelle. Das wichtigste Bleimineral und wirtschaftlich bedeutend ist Bleiglanz (Galenit, PbS). Weitere wichtige Bleiminerale sind Cerussit (PbCO₃), Anglesit (PbSO₄), Pyromorphit (Pb₅(PO₄)₃Cl) und Mimetesit (Pb₅(AsO₄)₃Cl).

Der flächengewichtete Median der oberflächennahen Gesteine in Baden-Württemberg liegt bei 17 mg/kg und entspricht damit weitgehend dem CLARKE-Wert der oberen Erdkruste. Die 90. Perzentilwerte für Blei schwanken in badenwürttembergischen Gesteinen zwischen 8,5 und 94 mg/kg.

Sehr niedrige Werte (P 90: < 20 mg/kg) findet man in quartären Süßwasserkalken, im Oberjura, im Oberen Muschelkalk sowie im Mittleren und Unteren Buntsandstein.

Erhöhte Werte (P 90: > 20–40 mg/kg) treten in Lösssedimenten und Quartärschichten (Kiese u. Sande) sowie im Tertiär des Schichtstufenlandes und des Molassebeckens und in tertiären Magmatiten und Impaktgesteinen auf, außerdem im Mittel- und Unterjura, im Unterkeuper, im Oberen Buntsandstein sowie in den Karbon- und Rotliegend-Sedimenten.

Mittlere Werte (P 90: > 40-50 mg/kg) ergeben sich für den Ober- und Mittelkeuper, sowie für Migmatite und Gneise.


Hohe Werte (P 90: > 50–80 mg/kg) wurden im Unteren Muschelkalk, im Zechstein, in den sauren Permokarbon-Magmatiten, in basisch-intermediären Permokarbon-Magmatiten und in variskischen Intrusiva festgestellt.

Sehr hohe Werte (P 90: > 80 mg/kg) weisen Mittlerer Muschelkalk und das gefaltete Paläozoikum auf.

Blei tritt in den gesteinsbildenden Mineralen hauptsächlich in Feldspäten und Glimmern auf. Für einen Großteil der Gehalte im kristallinen Grundgebirge und wahrscheinlich auch der Lösssedimente kann von einer derartigen Fixierung des Bleis ausgegangen werden.

Ziemlich arm an Blei sind die quartären Süßwasserkalke und die Kalksteine des Ober- und Mitteljura. Höhere Gehalte in mergeligen Partien zeigen die hohe Sorptionsfähigkeit von Blei an Tonmineralen, hauptsächlich an Kaolinit.

Höhere 90. Perzentilwerte und sehr hohe Einzelwerte bis 0,3 % (Mittelkeuper) und 1,0 % (Unterer Muschelkalk) spiegeln geogene, vorwiegend als PbS vorliegende, schichtgebundene Vererzungen wieder. Im Mittelkeuper sind diese an der Bleiglanzbank (mikritischer Dolomitstein, örtlich schillführend, mit stellenweise eingestreutem Bleiglanz) und dicht darüber und darunter lagernden Horizonten konzentriert. Hohe Bleikonzentrationen im Kieselsandstein konnten mehrfach auf Bleiglanz zurückgeführt werden. Mindestens eine Quelle hoher Bleigehalte im gefalteten Paläozoikum ("paläozoische Schiefer") konnte durch Schwermineraluntersuchungen als fossile Seife mit Bleiglanz und Bleispießglanzen u. a. identifiziert werden.

Boxplots für Blei (Pb); Gehalte in mg/kg

Statistische Kennwerte für Blei (Pb, in mg/kg) für die verschiedenen petrogeochemischen Einheiten in Baden-Württemberg:

Geochemische Einheit	Kürzel	Anzahl (n)	Minimum	Maximum	Mittelwert	Std. Abw.	P 90	Median (P 50)
Quartär								
Junger Süßwasserkalk	qk	16	5	13	6,1	2,2	8,5	5
Lösssediment	los	40	5	182	30	26	35	26
Quartärschichten (Kiese u. Sande)	qs	149	2	38	14	6,8	23	12
Tertiär								
Tertiär des Schcihtstufenlandes	tOR	10	23	30	27	2,6	30	27
Tertiär des Molassebeckens	tMO+tLV	134	2	120	20	19	31	16
Tertiäre Magmatite und Impaktgesteine	tJM+tIK	9	5	37	21	13	33	23
Jura								
Oberjura	jo	1151	2	33	8,9	4,4	15	8
Mitteljura	jm	114	3	39	27	8,4	35	29
Unterjura	ju	125	17	89	30	8,7	37	29
Trias								
Mittel- und Oberkeuper	km+ko	604	2	3321	43	174	44	13
Unterkeuper	ku	24	5	67	20	17	40	14
Oberer Muschelkalk	mo	416	2	263	11	24	17	5
Mittlerer Muschelkalk	mm	105	2	1076	45	111	94	17
Unterer Muschelkalk	mu	127	5	10450	159	966	74	19
Oberer Buntsandstein	so	56	8	170	20	22	25	18
Unterer und Mittlerer Buntsandstein	su+sm	29	5	23	11	4,9	15	10
Perm-Oberkarbon								
Zechstein	Z	18	2	117	26	28	55	17
Karbon- und Rotliegend-Sedimente	co+rS	29	5	167	26	29	38	19
Saure Permokarbon-Magmatite	rM+cVK	44	5	143	34	31	74	23
Nichtkristallines Grundgebirge								
Gefaltetes Paläozoikum	palg	61	5	533	57	102	83	23
Kristallines Grundgebirge								
Basisch-intermediäre Permokarbon- Magmatite	GG	116	7	206	38	28	68	31
Variskische Intrusiva	GP	199	5	205	51	24	73	48
Migmatite und Gneise	MI+gn	136	5	411	32	48	50	20
Alle Einheiten		3712	2	10450	Flächen	Flächengewichteter Median		

Externe Lexika

WIKIPEDIA

• <u>Blei</u>

Baden-Württemberg REGIERUNGSPRÄSIDIUM FREIBURG

Datenschutz

Cookie-Einstellungen

Barrierefreiheit

Quell-URL (zuletzt geändert am 03.02.23 - 11:38): https://lgrbwissen.lgrb-bw.de/geologie/geogene-grundgehalte-hintergrundwerte-den-petrogeochemischen-einheiten-baden-wuerttemberg/blei