

Geologie >> Nickel

Nickel

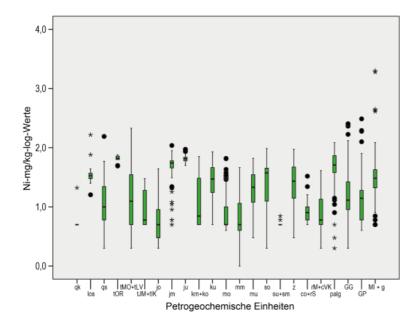
Geogene Grundgehalte für Nickel

Nickel liegt mit 84 mg/kg in der Erdkruste vor und steht seiner Häufigkeit nach an 23. Stelle. Es ist also häufiger als Kupfer oder Zink. Gediegen kommt Nickel nur in Eisenmeteoriten und vermutlich auch im Erdkern vor. Die wichtigsten Ni-Minerale sind Pentlandit ((Fe,Ni)₉S), Nickelin (NiAs), Millerit (NiS) und das Verwitterungsprodukt Annabergit (Ni₆[AsO₄]₂ · 8 H₂O).

Der flächengewichtete Median der oberflächennahen Gesteine Baden-Württembergs beträgt 18 mg/kg, was eine deutliche Abreicherung gegenüber dem CLARKE-Wert darstellt.

Die P 90-Werte der petrogeochemischen Gesteinseinheiten Baden-Württembergs streuen zwischen 5 und 95 mg/kg.

Niedrige Werte (P 90: < 30 mg/kg) treten in quartären Süßwasserkalken, tertiären Magmatiten und Impaktgesteinen, im Oberjura, im Oberen- und Mittleren Muschelkalk, im Mittleren und Unteren Buntsandstein, in Karbon- und Rotliegend-Sedimenten, sauren Permokarbon-Magmatiten und in variskischen Intrusiva auf.


Erhöhte Werte (P 90: > 30–50 mg/kg) finden sich in Lösssedimenten und Quartärschichten (Kiese u. Sande), in Gesteinen von Ober- und Mittelkeuper und im Unteren Muschelkalk.

Hohe Werte (P 90: > 50–80 mg/kg) weisen das Tertiär des Schichtstufenlandes und des Molassebeckens, Mittel- und Unterjura, Unterkeuper, Oberer Buntsandstein, Zechstein, basisch-intermediäre Permokarbon-Magmatite sowie Migmatite und Gneise auf.

Sehr hohe Werte (P 90: > 80 mg/kg) wurden im gefalteten Paläozoikum angetroffen.

Nickel ähnelt dem Magnesium- und Eisen-Ion in Bezug auf Größe und Ladung, weshalb es oft in Mineralen wie Olivine, Pyroxene oder Amphibole eingebaut wird. Diese sind charakteristische Bestandteile von basischen und ultrabasischen Gesteinen. Die hohen Maximalwerte von 1998 mg/kg bei den Migmatiten und Gneisen sind beispielsweise auf Serpentinite zurückzuführen.

Im sedimentären Bereich zeigt sich eine positive Korrelation der Ni-Gehalte mit dem Tonanteil, z. B. in Tertiärschichten, im Mittel- und Unterjura, Unterkeuper und Unteren Muschelkalk. Dies ist mit der relativ hohen Bindungsfähigkeit des Nickels an Tonminerale durch Adsorption an die Oberflächen und Diffusion in die Zwischenschichten zu erklären (Brinker, 1995). Auch eine Anlagerung an organische Substanz kommt bei tonigen Sedimenten in Frage.

Boxplots für Nickel (Ni); Gehalte in mg/kg

Statistische Kennwerte für Nickel (Ni, in mg/kg) für die verschiedenen petrogeochemischen Einheiten in Baden-Württemberg:

Geochemische Einheit	Kürzel	Anzahl (n)	Minimum	Maximum	Mittelwert	Std. Abw.	P 90	Median (P 50)	
Quartär									
Junger Süßwasserkalk	qk	16	5	21	6,0	4,0	5	5	
Lösssediment	los	40	16	165	37	22	42	34	
Quartärschichten (Kiese u. Sande)	qs	149	2	155	19	19	46	10	
Tertiär									
Tertiär des Schichtstufenlandes	tOR	10	49	76	65	9,1	74	66	
Tertiär des Molassebeckens	tMO+tLV	134	2	214	29	41	56	13	
Tertiäre Magmatite und Impaktgesteine	tJM+tIK	9	5	30	12	9,1	21	6	
Jura									
Oberjura	jo	701	2	44	7,5	7,1	17	5	
Mitteljura	jm	124	5	109	50	19	67	55	
Unterjura	ju	125	50	94	65	7,1	74	65	
Trias									
Mittel- und Oberkeuper	km+ko	604	5	71	18	16	44	7	
Unterkeuper	ku	24	5	85	33	22	58	30	
Oberer Muschelkalk	mo	183	4	66	9,9	9,8	22	5	
Mittlerer Muschelkalk	mm	104	1	46	9,0	8,7	19	5	
Unterer Muschelkalk	mu	110	3	66	24	14	44	22	
Oberer Buntsandstein	so	56	2	97	33	19	53	38	
Unterer und Mittlerer Buntsandstein	su+sm	29	5	7	5,1	0,41	5	5	
Perm-Oberkarbon									
Zechstein	Z	18	3	94	32	24	58	28	
Karbon- und Rotliegend-Sedimente	co+rS	29	5	33	9,2	5,9	12	8	
Saure Permokarbon-Magmatite	rM+cVK	44	2	41	10	8,9	21	6	
Nichtkristallines Grundgebirge									
Gefaltetes Paläozoikum	palg	61	2	122	55	32	95	51	
Kristallines Grundgebirge									
Basisch-intermediäre Permokarbon- Magmatite	GG	116	2	254	30	46	72	13	
Variskische Intrusiva	GP	199	4	307	19	31	27	14	
Migmatite und Gneise	MI+gn	136	5	1998	69	238	59	31	
Alle Einheiten		3021	1	1998	Flächen	Flächengewichteter Median			

Externe Lexika

WIKIPEDIA

Nickel

Literatur

Brinker, K. (1995). Schwermetallstatus der landwirtschaftlich genutzten Böden in Mecklenburg-Vorpommern. –
Dipl.-Arb. Univ. Rostock, – S. [unveröff.]

Datenschutz

Cookie-Einstellungen

Barrierefreiheit

Quell-URL (zuletzt geändert am 03.02.23 - 11:34): https://lgrbwissen.lgrb-bw.de/geologie/geogene-grundgehalte-hintergrundwerte-den-petrogeochemischen-einheiten-baden-wuerttemberg/nickel