

Geologie > > Aluminium

Aluminium

Geogene Grundgehalte für Aluminiumoxid

Aluminium (als Al₂O₃) ist mit 8,23 % in der Erdkruste vertreten und steht damit seiner Häufigkeit nach an 3. Stelle aller Elemente und an 1. Stelle der Metalle.

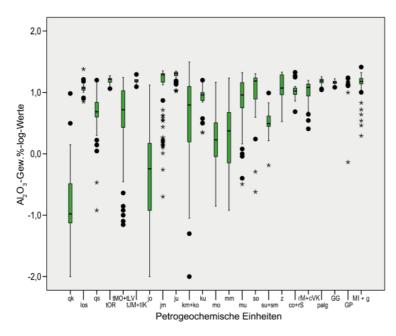
Die größte Menge von Aluminium kommt in Silikaten vor, zu denen die wichtigsten gesteinsbildenden Minerale wie Feldspate (z. B. Orthoklas, KAlSi₃O₈), Glimmer (z. B. Muskovit, KAl₂(AlSi₃)O₁₀(OH,F)₂), Amphibole und Pyroxene zählen.

Trotz seines reichlichen Vorkommens gilt Aluminium als nicht essenziell. Auf Pflanzen und Tiere können freie Aluminiumlonen, die bei der Verwitterung aluminiumhaltiger Minerale bei pH-Werten unter 4 entstehen, jedoch toxische Wirkung haben.

Der flächengewichtete Median der oberflächennahen Gesteine Baden-Württembergs beträgt 7,63 % Al₂O₃, entsprechend 4,04 % Al. Dies bedeutet, dass die baden-württembergischen Gesteine gegenüber dem CLARKE-Wert der oberen Erdkruste an Aluminium deutlich abgereichert sind.

Die P 90-Werte für Al₂O₃ der petrogeochemischen Einheiten schwanken deutlich zwischen 2,27 und 21,71 %.

Niedrige Werte (P 90: < 10 %) treten in quartären Süßwasserkalken, in Gesteinen des Oberjuras, im Oberen- und Mittleren Muschelkalk sowie im Mittleren und Unteren Buntsandstein auf.


Erhöhte Werte (P 90: > 10–15 %) finden sich in Lösssedimenten, in Quartärschichten (Kiese u. Sande), im Tertiär des Molassebeckens, im Unterkeuper, in Karbon- und Rotliegend-Sedimenten sowie in sauren Permokarbon-Magmatiten.

Hohe Werte (P 90: > 15–20 %) weisen die Gesteine aus dem Tertiär des Schichtstufenlandes, tertiäre Magmatite und Impaktgesteine, Ober- und Mittelkeuper, Unterer Muschelkalk, Oberer Buntsandstein, gefaltetes Paläozoikum, basischintermediäre Permokarbon-Magmatite, variskische Intrusiva und Migmatite und Gneise auf.

Sehr hohe Werte (P 90: > 20 %) wurden im Mittel- und Unterjura sowie im Zechstein festgestellt.

Dem Auftreten der häufigsten, o. g. gesteinsbildenden Minerale entsprechend kommen hohe Aluminiumgehalte in allen Kristallingesteinen Baden-Württembergs vor.

Bei den Sedimenten zeigt sich eine starke Korrelation von Aluminium mit dem Ton- und/oder Feldspatgehalt der Gesteine. Karbonate in Kalken und Quarz in Sandsteinen wirken verdünnend und erklären die niedrigen Gehalte im Oberjura und in Teilen des Muschelkalks und Buntsandsteins.

Boxplots für Aluminiumoxid (Al₂O₃); Gehalte in %

Statistische Kennwerte für Aluminiumoxid ($A_{2}O_{3}$, in %) für die verschiedenen petrogeochemischen Einheiten in Baden-Württemberg:

Geochemische Einheit	Kürzel	Anzahl (n)	Minimum	Maximum	Mittelwert	Std. Abw.	P 90	Median (P 50)
Quartär								
Junger Süßwasserkalk	qk	16	0,01	9,6	0,99	2,43	2,27	0,11
Lösssediment	los	40	7,06	23,93	11,90	2,55	13,20	11,76
Quartärschichten (Kiese u. Sande)	qs	149	0,12	15,85	6,02	3,31	11,83	4,83
Tertiär								
Tertiär des Schichtstufenlandes	tOR	10	11,51	18,72	15,66	2,24	17,22	16,45
Tertiär des Molassebeckens	tMO+tLV	134	0,07	17,53	6,93	4,99	14,62	5,21
Tertiäre Migmatite und Impaktgesteine	tJM+tIK	9	12,38	19,63	15,37	2,04	16,88	15,37
Jura								
Oberjura	jo	1152	0,01	13,18	1,22	1,67	3,56	0,57
Mitteljura	jm	133	0,2	22,37	15,84	7,03	21,16	19,34
Unterjura	ju	125	10,44	22,19	19,43	2,57	21,71	20,30
Trias								
Mittel- und Oberkeuper	km+ko	616	0,01	31,4	7,32	5,89	15,40	6,25
Unterkeuper	ku	25	2,21	15,82	8,60	3,63	12,79	9,09
Oberer Muschelkalk	mo	223	0,14	14,59	2,52	2,50	5,62	1,69
Mittlerer Muschelkalk	mm	109	0,12	17,18	3,32	3,34	7,54	2,36
Unterer Muschelkalk	mu	117	0,32	21,02	10,01	5,71	18,01	9,08
Oberer Buntsandstein	so	64	0,24	20,19	13,03	5,41	17,98	15,30
Unterer und Mittlerer Buntsandstein	su+sm	29	0,65	9,79	3,70	1,80	5,62	3,11
Perm-Oberkarbon								
Zechstein	Z	19	3,35	21,45	13,05	6,00	20,27	11,81
Karbon- und Rotliegend-Sedimente	co+rS	32	4,85	21,24	10,96	3,18	12,55	10,56
Saure Permokarbon-Migmatite	rM+cVK	50	2,55	15,65	10,97	3,38	14,71	12,03
Nichtkristallines Grundgebirge								
Gefaltetes Paläozoikum	palg	61	11,01	18,04	15,31	1,55	16,98	15,45
Kristallines Grundgebirge								
Basisch-intermediäre Permokarbon-Magmatite	GG	123	12,11	16,67	14,60	0,88	15,83	14,69
Variskische Intrusiva	GP	236	0,73	17,29	14,91	1,22	15,89	15,05
Migmatite und Gneise	MI+gn	137	1,97	25,88	14,92	3,26	18,32	15,03
Alle Einheiten		3609	0,01	31,4	Flächengewichteter Median			

Externe Lexika

WIKIPEDIA

• <u>Aluminium</u>

Baden-Württemberg REGIERUNGSPRÄSIDIUM FREIBURG

Datenschutz

Cookie-Einstellungen

Barrierefreiheit

Quell-URL (zuletzt geändert am 02.02.23 - 13:13):https://lgrbwissen.lgrb-bw.de/geologie/geogene-grundgehalte-hintergrundwerte-den-petrogeochemischen-einheiten-baden-wuerttemberg/aluminium