

Geologie - Geogene Grundgehalte (Hintergrundwerte) in den petrogeochemischen Einheiten von Baden-Württemberg

Geogene Grundgehalte (Hintergrundwerte) in den petrogeochemischen Einheiten von Baden-Württemberg

Kenntnisse des Chemismus der Gesteine sind gefragt, wo es um die Nutzung mineralischer Rohstoffe, Standorte der Pflanzen- und Tierproduktion oder um Fragen des Umweltmonitorings geht.

Für 20 Elemente und Oxide und für 23 petrogeochemische Einheiten werden orientierende Kennwerte der geogenen Grundgehalte, basierend auf Martin (2009) angegeben. Der geogene Grundgehalt wird definiert als natürlicher, bildungsbedingter Stoffbestand des Gesteins inklusive eventuell vorhandener Vererzungen. Der Hintergrundgehalt eines Gesteins oder Bodens setzt sich zusammen aus dem geogenen Grundgehalt und der ubiquitären Stoffverteilung als Folge diffuser Einträge.

Durch entsprechende Probenselektion wurde sichergestellt, dass die mitgeteilten geochemischen Gehalte ausschließlich geogene Grundgehalte repräsentieren. Sie sind wegen des Fehlens weiterer Stoffeinträge zahlenmäßig den Hintergrundwerten gleichzusetzen.

Petrogeochemische Einheiten

Definition petrogeochemischer Einheiten

Die Beschreibung der geogenen Grundgehalte in Gesteinen Baden-Württembergs erfolgt getrennt für 23 petrogeochemische Gesteinseinheiten. Die Verbreitung der petrogeochemischen Einheiten in Baden-Württemberg geht aus dem MapWidget (s. o.) hervor.

Petrogeochemische Einheiten sind spezielle geologische Einheiten, die – abhängig vom Bearbeitungs- und Darstellungsmaßstab – innerhalb gewisser Grenzen als einheitlich hinsichtlich Petrographie, Genese und Stoffinhalt betrachtet werden können (lediglich im Keuper wechseln die Hauptgesteinstypen Karbonatgestein, Mergelstein, Tonstein, Sandstein und Sulfatgestein bereits über kurze vertikale Distanz). Dem Bearbeitungsmaßstab und den vorhandenen Analysedaten entsprechend konnte nur eine begrenzte Anzahl von petrogeochemischen Einheiten differenziert ausgewiesen werden. Berücksichtigt wurde dabei aber stets, dass geologische Einheiten, von denen bereits großflächig erhöhte Gehalte an einzelnen Elementen bekannt sind, immer nur einer petrogeochemischen Einheit angehören.

Datengrundlage und Methodik

Die Datengrundlage für die geochemische Karte von Baden-Württemberg sowie die thematischen Karten für die 20 untersuchten Elemente bildet die Geologische Karte von Baden-Württemberg. Sie stellt als Geodatensatz der Integrierten geowissenschaftlichen Landesaufnahme (GeoLa), aufgetrennt nach abgedeckten Festgesteinen und den überlagernden Lockergesteinen die wichtigste flächenhafte Information zur Verbreitung geologischer Einheiten in Baden-Württemberg (GK-BW) dar (Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau, 2015d).

Im Zuge des 2003 begonnenen Projektes GeoLa wurden die geologischen Grundlagen digitalisiert, zu einem landesweiten Datensatz zusammengefasst, inhaltlich und geometrisch harmonisiert und an zahlreichen Stellen inhaltlich – zum Teil großräumig – korrigiert. Der aktuelle Geologiedatensatz aus GeoLa ist das aktuelle, qualitätsgeprüfte Ergebnis des neuesten Kenntnisstandes zur Geologie von Baden-Württemberg, inhaltlich konsistent zu den Bohrungsdaten der ADB sowie zahlreichen anderen geowissenschaftlichen Datensätzen der Bodenkunde und der angewandten Geologie. Durch die Fortschreibungsfähigkeit der geologischen Grundlage sowie automatisierter Verfahren zur Ableitung der petrogeochemischen Karte können die thematischen Karten bzw. Daten zu den geogenen Grundgehalten zeitunabhängig aktualisiert werden.

Die unmittelbare Kopplung der Karten der geogenen Grundgehalte an die GeoLa-Datenbasis setzt zwei methodische Schritte voraus:

- Zuordnung und Aggregierung der rund 420 Generallegendeneinheiten der GK-BW aus GeoLa zu den 23 petrogeochemischen Einheiten (s. Tabelle "Zuordnung geologischer Einheiten zu petrogeochemischen Einheiten")
- 2. Generalisierung der GK-BW aus dem vorliegenden GeoLa-Maßstabsbereich von ca. 1:30 000 bis 1:50 000 auf den Zielmaßstabsbereich von ca. 1:200 000 bis 1:300 000

Für die Generalisierung der GeoLa GK-BW-Daten in den Übersichtsmaßstab wurde das GIS-Werkzeug GeoScaler (Huot-Vezina et al., 2012) eingesetzt, welches auch Bestandteil des im LGRB erstellten Werkzeugs AutoGen zur automatischen Generalisierung von Geofachdaten ist (Schuff, 2019).

Das eingesetzte Generalisierungswerkzeug basiert im Kern auf einem zellulären Automaten, der von einem Ausgangszustand der zuvor gerasterten geologischen Information im Originalmaßstab in einem iterativen Prozess einen gewünschten Endzustand im Zielmaßstab berechnet. Mit jeder Iteration werden die Zustände der Rasterzellen in Abhängigkeit ihrer Nachbarzellen neu berechnet, was zu einer geometrischen Vereinfachung und somit Generalisierung der Daten führt.

Vergleicht man das Generalisierungsergebnis mit der bis 2021 gültigen Kartengrundlage, der historischen GÜK300 (Stand 1998), so ergibt sich eine ca. 30 % höhere geometrische Auflösung. Die prozentualen Flächenanteile der petrogeochemischen Einheiten an der Gesamtfläche von Baden-Württemberg sind im Vergleich zur GÜK300 nahezu unverändert geblieben. Inhaltlich sinnvoll können die Daten damit in einem Maßstabsbereich zwischen ca. 1:150 000 und 1:300 000 interpretiert werden.

Tabelle zur Zuordnung geologischer zu petrogeochemischen Einheiten

Für jede der 23 petrogeochemischen Einheiten werden weitgehend einheitliche geologische Einheiten (GeoLa Generallegendeneinheiten (GLE)) aggregiert. Insgesamt umfasst der Geologiedatensatz 417 GLE. Aus Darstellungsgründen werden in der Zuordnungstabelle nur die wichtigsten, d. h. flächenmäßig repräsentativsten GLE aufgelistet.

Petrogeochemische Einheit	PE-Kürzel	GK-BW Generallegendeneinheit
Junger Süßwasserkalk	qk	Quartärer Sinterkalk
		Stuttgart-Travertin
Lösssediment	los	Lösslehm
		Löss
		Sandlöss
		Flugsandsediment
		Lösssand
		Schwemmlöss
Quartärschichten (Kiese u. Sande)	qs	Rheingletscher-Terrassenschotter

		Oberschwaben-Deckenschotter
		Mannheim-Formation
		Ludwigshafen-Formation
		Viernheim-Formation
		Ortenau-Formation
		Neuenburg-Formation
		Hasenweiler-Formation
		Illmensee-Formation
Tertiär des Schichtstufenlandes	tOR	Feuersteinlehm
		Küstenkonglomerat-Formation
		Bohnerz-Formation
		Pechelbronn-Formation
		Schliengen-, Haguenau- und Küstenkonglomerat-Formationen
		Tüllingen-Schichten
		Riessee-Formation
		Froidefontaine-Formation
Tertiär des Molassebeckens	tMO + tLV	Obere Süßwassermolasse
		Untere Süßwassermolasse
		Jüngere Juranagelfluh
		Obere Meeresmolasse
		Obere Brackwassermolasse
Tertiäre Magmatite und Impaktgesteine	tJM + tIK	Bunte Brekzie
		Tephrit-Laven und Pyroklastite
		Essexite und Theralite
		Ries-Suevit
		Kaiserstuhl-Magmatite
		Tuffschlot
		Karbonatit
		Jüngere Rheingraben- und Südschwarzwald-Magmatite
		Hegau-Phonolith
		Jüngere Odenwald-Kraichgau-Magmatite
Oberjura	jo	Unterer Massenkalk
		Oberer Massenkalk
		Mergelstetten-Formation
		Wohlgeschichtete-Kalke-Formation
		Hangende-Bankkalke-Formation
		Untere-Felsenkalke-Formation
		Liegende-Bankkalke-Formation
		Lacunosamergel-Formation
		Zementmergel-Formation
		Impressamergel-Formation
Mitteljura	jm	Opalinuston-Formation
witterjura	ייינ	Opamasion of official

		Wedelsandstein-Formation
		Achdorf-Formation
		Eisensandstein-Formation
		Ostreenkalk-Formation
		Hamitenton-Formation
		Ornatenton-Formation
		Gosheim-Formation
		Dentalienton-Formation
Unterjura	ju	Obtususton-Formation
		Arietenkalk-Formation
		Angulatensandstein-Formation
		Amaltheenton-Formation
		Posidonienschiefer-Formation
		Numismalismergel-Formation
		Psilonotenton-Formation
		Jurensismergel-Formation
Mittel- und Oberkeuper	km + ko	Löwenstein-Formation (Stubensandsteine)
		Grabfeld-Formation (Gipskeuper)
		Hassberge-Formation (Kieselsandstein)
		Trossingen-Formation (Knollenmergel)
		Stuttgart-Formation (Schilfsandsteine, Dunkle Mergel)
		Steigerwald-Formation (Untere Bunte Mergel)
		Mainhardt-Formation (Obere Bunte Mergel)
Unterkeuper	ku	Erfurt-Formation (Lettenkeuper)
Oberer Muschelkalk	mo	Oberer Muschelkalk
		Meißner-Formation
		Trigonodusdolomit
		Trochitenkalk-Formation
		Plattenkalk
		Quaderkalk-Formation
Mittlerer Muschelkalk	mm	Mittlerer Muschelkalk
		Diemel-Formation
		Heilbronn-Formation
		Karlstadt-Formation
Unterer Muschelkalk	mu	Unterer Muschelkalk (ungegliedert)
		Jena-Formation
		Buchen-Subformation
		Freudenstadt-Formation
Oberer Buntsandstein	SO	Rötton-Formation
		Obere Röttone
		Myophorienbank
		Rötquarzit

		•			
		Untere Röttone			
		Plattensandstein-Formation			
Unterer und mittlerer Buntsandstein	su + sm	Geröllsandstein-Subformation (der sV)			
		Badischer Bausandstein			
		Kristallsandstein-Subformation (der sV)			
		Eck-Formation			
		Miltenberg-Formation			
Zechstein	Z	Tigersandstein-Formation			
		Langenthal-Formation			
		Zechsteindolomit-Formation			
		Kirnbach-Formation			
		Wiesental-Formation			
Karbon- und Rotliegend-Sedimente	co + rS	Michelbach-Formation			
		Weitenau-Formation			
		Staufenberg-Formation			
		Schramberg-Formation			
		Oppenau-Formation			
		Rebberg-Formation			
Saure Permokarbon-Magmatite	rM + cVK	Brandeck-Quarzporphyr			
Saure Permokarbon-wagmalile		Münstertal-Quarzporphyr			
		Baden-Baden-Quarzporphyr			
		Oostal-Subformation			
		Einheit der sauren Vulkanite			
		Einheit der sauren Pyroklastite			
Gefaltetes Paläozoikum	palg	Sengalenkopf-Schiefer-Formation			
		Buntes Konglomerat			
		Schleifenbach-Schiefer-Formation			
	Wei Star Star Sch Opp Ret tite rM + cVK Brar Mür Bad Oos Einl Einl Einl Palg Sen Bun Sch Proi karbon-Magmatite GG Einl Dur Lan Dior GP Trib	Protocanitesgrauwacken-Formation			
Basisch-intermediäre Permokarbon-Magmatite	GG	Einheit der intermediären Vulkanite			
		Dunkler Gangmagmatit			
		Lamprophyr			
		Dioritporphyrit			
Variskische Intrusiva	GP	Triberg-Granit			
		Forbach-Granit			
		Malsburg-Granit			
		Oberkirch-Granit			
		St. Blasien-Granit			
		Albtal-Granit			
		Bärhalde-Granit			
		Bühlertal-Granit			
		Eisenbach-Granit			
		Granitporphyr			

		Стапіфогрпут
		Schluchsee-Granit
		Randgranit
		Ganggranit
Migmatite und Gneise	MI + gn	Paragneis
		Flasergneis
		Streifig-schlieriger Migmatit
		Paragneis und anatektisch überprägte Gneise
		Wiese-Wehra-Formation
		Migmatit mit Paragneisrelikten
		Murgtal-Gneisanatexit-Formation

Das Quartär ist in die Einheiten junger Süßwasserkalk (qk) (0,1 %), Lösssediment (los) (11,1 %) und Quartärschichten (Kiese u. Sande) (qs) (21,7 %) gegliedert. Junger Süßwasserkalk umfasst pleistozäne bis holozäne (Sinter-)Kalkausfällungen, die auch als Travertin und Kalktuff bezeichnet werden. Bekanntester Vertreter ist der Stuttgart-Travertin. Lösssediment beinhaltet alle Lösssedimente, namentlich Löss und Lösslehm. Unter Quartärschichten zusammengefasst sind alle übrigen quartären Lockersedimente, vornehmlich Kiese und Sande des Oberrheingrabens und des Alpenvorlands, sonstige Bach- und Flussablagerungen sowie Umlagerungssedimente.

Das Tertiär besteht aus den Einheiten Tertiär des Schichtstufenlandes (tOR) (0,3 %), Tertiär des Molassebeckens (tMO + tLV) (3,9 %) sowie Tertiäre Magmatite und Impaktgesteine (tJM + tlK) (0,4 %). Das Tertiär des Schichtstufenlandes beinhaltet auch die tertiären Sedimente des Oberrheingrabens, welche im Wesentlichen aus Mergeln und Tonsteinen, untergeordnet aus Sanden und Kalken bestehen. Das Tertiär des Molassebeckens umfasst die sandigen bis tonigen, teilweise auch kalkigen Sedimente des Tertiärs im Alpenvorland, im Schichtstufenland, im Übergang zur Schwäbischen Alb und im Übergang zum Oberrheingraben. Tertiäre Magmatite und Impaktgesteine sind die jüngeren Vulkangesteine von Kaiserstuhl, Hegau, Katzenbuckel und Mittlerer Alb sowie die Impaktgesteinseinheiten der Bunten Brekzie und des Ries-Suevits.

Der Jura wird traditionell in Ober- (jo) (11,6 %), Mittel- (jm) (2,7 %) und Unterjura (ju) (3,0 %) gegliedert. Von ziemlich mächtigen Kalksteinserien im Oberjura mit nur wenig Mergel-Zwischenlagen reicht das petrographische Spektrum zu Kalksteinen, Mergeln, Tonsteinen, Eisenoolithen und Sandsteinen der tiefer gelegenen Jura-Abteilungen. Insgesamt umfasst die GK-BW im GeoLa-Datensatz ca. 70 Generallegendeneinheiten, die überwiegend Formationen repräsentieren.

Die Trias wurde in Ober- und Mittelkeuper (ko + km) (11,4 %), Unterkeuper (ku) (4,2 %), Oberen (mo) (7,0 %), Mittleren (mm) (1,8 %) und Unteren Muschelkalk (mu) (1,8 %), Oberen Buntsandstein (so) (4,3 %) sowie Mittleren und Unteren Buntsandstein (sm + su) (4,3 %) gegliedert. Mittel- und Oberkeuper wurden zusammengefasst und zeichnen sich durch Sandsteinablagerungen sowie Mergel-, Karbonat- (Kalk- und Dolomitstein) und Sulfathorizonte aus. Im Unterkeuper treten die gleichen Gesteinsarten auf; jedoch dominieren die tonreichen Sedimente, während Sandsteine mengenmäßig zurücktreten. Im dreigeteilten Muschelkalk nimmt der Karbonatanteil vom Oberen zum Unteren Muschelkalk ab. Geochemisch bedeutsam ist die Heilbronn-Formation im Mittleren Muschelkalk mit Steinsalz und Sulfatgesteinen. Der Obere Buntsandstein setzt sich aus den Tonsteinen der Rötton-Formation und dem violettroten, glimmerreichen Plattensandstein zusammen. Der Mittlere und Untere Buntsandstein besteht aus etwas gröberen, z. T. geröllführenden bis konglomeratischen, weiß bis rötlich gefärbten Sandsteinabfolgen und reicht stratigraphisch bis zum Eck-Horizont.

Die Schichten von Perm und Oberkarbon bestehen aus dem Zechstein (z) (0,4 %), Karbon- und Rotliegend-Sedimenten (co + rs) (0,3 %) und den sauren Permokarbon-Magmatiten (rM + cVK) (0,3 %), die im Wesentlichen aus Quarzporphyren sowie sauren Vulkaniten und Pyroklastiten bestehen. Der Zechstein besteht aus Sandsteinen, Arkosen, Fanglomeraten und wenig Karbonaten. Wichtigste Formationen sind die Tigersandstein-, Langenthal-, Zechsteindolomit- und die Kirnbach-Formation. Zu den Karbon- und Rotliegend-Sedimenten zählen vornehmlich Arkosen, Sandsteine und Fanglomerate. Hiervon zu unterscheiden sind die sauren Permokarbon-Magmatite, die petrographisch relativ einheitlich als "Quarzporphyre" bezeichnet werden und als Decken und Stöcke vom Odenwald entlang des Oberrheingrabens bis zum Südschwarzwald verbreitet sind. Wegen der petrographischen Übereinstimmung werden hierzu auch die älter datierten Münstertal- und Stockberg-Quarzporphyre gezählt.

Das Gefaltete Paläozoikum (palg) (0,1 %) umfasst vornehmlich Gesteine aus der Badenweiler-Lenzkirch-Zone wie Konglomerate und Grauwacken (Badenweiler-Konglomerat-Formation, Buntes Konglomerat u. a.). Ein weiterer hierzu zählender Gesteinskomplex sind die sog. Alten Schiefer von Baden-Baden und Gaggenau wie z. B. die Sengalenkopf-Schiefer-Formation.

Das kristalline Grundgebirge schließlich wurde gegliedert in basisch-intermediäre Permokarbon-Magmatite (GG) (0,1 %), variskische Intrusiva (GP) (3,9 %) sowie Migmatite und Gneise (Mi + gn) (5,4 %). Basisch-intermediäre Permokarbon-Magmatite sind überwiegend magmatisch entstandene Gesteine, die Gänge bilden. Verbreitet treten im Schwarzwald Dunkle Gangmagmatite, Lamprophyre und Dioritporphyrit auf. Insbesondere die dunklen Lamprophyre weisen meist hohe Gehalte an sonst eher seltenen Elementen auf. Die variskischen Intrusiva beinhalten überwiegend die Schwarzwälder Granitplutone, ferner Granodiorite, Syenite, Durbachit und den Diorit-Gabbro-Komplex des Odenwalds. Unter Migmatiten und Gneisen sind alle metamorphen Gesteine des Schwarzwalds und des Odenwalds zusammengefasst. Gneise sind metamorphe Gesteine mit wesentlichen Anteilen von Feldspat, meist auch mit Quarz, Glimmer, Amphibol oder Pyroxen. Migmatite zeigen neben metamorphen Texturen Anzeichen teilweiser Aufschmelzung. Neben vielen Gneisen und Migmatiten mit im weiteren Sinne granitischer Zusammensetzung sind hier auch basische bis ultrabasische Gesteine mit SiO₂-Gehalten unter 45 % vertreten. Hierzu gehören Amphibolite, Pyroxenite und Serpentinite. Sie sind z. B. reich an basaltophilen Elementen wie Chrom und Nickel.

Nicht definierte Bereiche (nn) umfassen mit ca. 0,1 % Flächenanteil anthropogen verändertes Gelände, Aufschüttungen, Gewässer sowie Bereiche mit geologisch unbekanntem Untergrund.

Probenahme

Für die vorliegende Zusammenfassung der geogenen Grundgehalte an Elementen in Gesteinen wurde keine gesonderte Probenahmekampagne durchgeführt, sondern die vorhandenen Analysenergebnisse aus der Labordatenbank ausgewertet, die auf Untersuchungen aus sehr unterschiedlichen Aufgabenstellungen beruhen. Das breit angelegte Spektrum von Fragestellungen garantiert in gewissem Maße eine für die Landesgeologie annähernd repräsentative Probenauswahl. Probenkollektive aus nur einem Untersuchungsanlass, wie z. B. der Prospektion, bergen die Gefahr untypischer und abnormal verteilter Analysenwerte.

Für die Auswahl der verwendeten Analysen wurde ein Kriterienkatalog erstellt, der hinsichtlich der Probenahme die folgenden Mindestanforderungen gewährleisten sollte:

- Alle Probenpunkte müssen sowohl nach Lagekoordinaten als auch Höhe ü. NHN genau verortet und in der Aufschluss- oder der Gewinnungsstellendatenbank des LGRB verzeichnet sein. Bei den Proben handelt es sich um Einzel- oder Schlitzproben aus natürlichen und künstlichen Übertageaufschlüssen, aus Kernbohrungen sowie um repräsentative Mischproben von Lockergesteinen. Viele der Proben wurden zur Beurteilung rohstoffkundlicher Verwendungsmöglichkeiten entnommen. Diese zeichnen sich durch eine große Anfangsmenge aus, aus der das Analysegut durch Einengungsverfahren gewonnen wurde. Vorteil ist eine hohe geologische Repräsentanz, zudem wirken sich kleine Inhomogenitäten oder Verunreinigungen kaum aus. Analysen aus dem Bohrgut von Meißelbohrungen wurden wegen möglicher An- und Abreicherungseffekte für diese Arbeit nicht verwendet.
- Alle Proben müssen hinsichtlich ihrer Gesteinsansprache nach dem Petrographieschlüssel, und hinsichtlich ihrer Zugehörigkeit zu einer geologischen Einheit nach dem Symbolschlüssel Geologie Baden-Württemberg des LGRB eindeutig bezeichnet sein. Zur Kontrolle der korrekten lithologischen Ansprache wurden die Analysenwerte und – wo vorhanden – Röntgenbeugungsanalysen verwendet.
- Es wurden nur Analysen ausgewertet, die den geogenen Grundgehalt der Gesteine Baden-Württembergs reflektieren. Der geogene Grundgehalt beschreibt die natürlichen chemischen Gehalte an Elementen und Stoffen. Hiervon zu unterscheiden ist definitionsgemäß der Hintergrundgehalt, der sich aus dem natürlichen geogenen Grundgehalt und dem zusätzlichen, diffusen, anthropogenen Stoffeintrag zusammensetzt.
- Die Proben zu dieser Arbeit wurden so gewählt, dass durch die Entnahmeart und -tiefe sämtliche anthropogenen Einflüsse ausgeschlossen werden können.
- Es wurde ferner auf frisches Gesteinsmaterial geachtet, natürliche Alterationen wie Verwitterung, Mineralisation oder hydrothermale Stoffveränderungen sollten möglichst ausgeschlossen bleiben, um eine Vergleichbarkeit der Werte zu ermöglichen.

Analytik

Die Elementgehalte wurden mit Hilfe der Röntgenfluoreszenzanalytik bestimmt. Hierzu wurden alle Proben getrocknet und in einer Scheibenschwingmühle mit Wolframcarbideinsatz analysenfein gemahlen. Wegen Blindwerten aus dem Mahlgefäß sind bei diesem Verfahren keine Bestimmungen von Wolfram und Kobalt möglich. Die Elemente Al, Ba, Ca, Cr, Cu, Fe, K, Mg, Na, Ni, P, Pb, Si, V und Zn wurden aus Lithiumborat-Schmelzen, die Elemente As, Mo, S, Th und U aus mittels Presswachs hergestellten Presstabletten gemessen.

Die Analysen erfolgten an einem Wellenlängen-dispersiven Röntgenfluoreszenz-Spektrometer, bis zu dem Jahr 2000 an einem PW 1480, danach an einem 2404 der Firma Philips. Seit 2015 erfolgten die Analysen an einem Axio mAX der Firma Panalytical (jetzt Firma Malvern Panalytical). Die Kalibrierung erfolgte über eine Auswahl von über 100 zertifizierten Geostandards. Die Langzeitstabilität des Messverfahrens wird über regelmäßige Monitormessungen, Rückmessungen von zertifizierten Referenzproben sowie über eine als Laborstandard wiederkehrend aufbereitete und gemessene Gesteinsprobe aus dem Kaiserstuhl gewährleistet.

Bei den Analysenergebnissen handelt es sich stets um Gesamt- bzw. Totalgehalte. Für einzelne Elemente existieren Umrechnungsfaktoren, die einen Vergleich der Werte mit den in der Umweltgesetzgebung verwendeten Methoden ermöglichen. Die Gesamtgehalte stellen die Obergrenze der mit den anderen Analysenverfahren bestimmbaren Elementkonzentrationen dar.

Statistische Auswertung

Die statistische Auswertung der geochemischen Parameter dient dazu, Verteilung und Wertebereiche für einzelne Elemente in den näher betrachteten petrogeochemischen Gesteinseinheiten zu ermitteln. Werte < Bestimmungsgrenze wurden zunächst näherungsweise gleich der halben Bestimmungsgrenze gesetzt. Für jedes Element und jede petrogeochemische Einheit wurden Anzahl der verwendeten Analysen, Minimum- und Maximumwert, arithmetischer Mittelwert, Standardabweichung, 90. Perzentilwert und Median (= 50. Perzentilwert) in Tabellen angegeben. Für Einheiten mit weniger als zehn Analysenwerten (n < 10) sind die statistischen Kennwerte nicht gesichert. Als orientierende Werte werden sie dennoch mitgeteilt.

Aus den Medianwerten der einzelnen petrogeochemischen Einheiten wurde entsprechend ihres jeweiligen prozentualen Anteils an der Landesfläche ein gewichteter, flächenbezogener Medianwert errechnet, der etwa dem "mittleren Gehalt für Baden-Württemberg" entspricht. Der flächenbezogene Median erlaubt Vergleiche von Elementgehalten in Baden-Württemberg mit den CLARKE-Werten, die den mittleren Masseanteil eines chemischen Elements in der Erdkruste bis in eine Tiefe von 15 km beziffern.

Die ermittelten Perzentilwerte sind Messwerte, die von einem vorgegebenen prozentualen Anteil der Messwerte unterschritten werden. Der 50. und der 90. Perzentilwert sind unempfindlich gegen grobe Ausreißer. Sie sind im Wasser- und Bodenschutzbereich schon seit längerem eingeführt und erlauben Vergleiche von Analysen aus verschiedenen Kompartimenten. Der 90. Perzentilwert wird im Boden als Obergrenze des als sicher geltenden Hintergrundes angesehen. In den Kartendarstellungen dieser Studie sind beide Perzentilwerte dargestellt.

Für jedes Element wurde weiterhin ein Boxplot erstellt, in dem die Verteilung der geogenen Grundgehalte in den petrogeochemischen Einheiten graphisch dargestellt wird. Die Darstellung entspricht genau derjenigen, die auch in der Studie "Natürliche geogene Grundwasserbeschaffenheit in den hydrogeochemischen Einheiten Baden-Württembergs" (Plum et al., 2009a) verwendet wurde. Hierzu wurden die Messwerte zunächst logarithmiert, die weitere Verarbeitung der Analysendaten erfolgte mit Hilfe des Programms SPSS Statistics 17.0. Die Boxplots sind in folgender Abbildung erläutert.

- Ausreißer; Werte > 3 Boxlängen vom oberen Rand der Box entfernt
- Ausreißer; Werte > 1,5 Boxlängen vom
- oberen Rand der Box entfernt

Maximum

75 %-Percentilwert

50 %-Percentilwert, Median

25 %-Percentilwert

Minimum

 Ausreißer; Werte > 1,5 Boxlängen vom unteren Rand der Box entfernt

Erläuterung der Boxplots

Interpretation der Ergebnisse

Ergebnisse: Für jedes ausgewertete Element folgt eine schematisierte Beschreibung. Zusätzlich werden die statistischen Kennwerte in einer Tabelle, weitere Perzentilwerte zusätzlich in einem Boxplot dargestellt. Die Verteilung der 50. und der 90. Perzentilwerte wird aus je einer geochemischen Karte der Landesfläche ersichtlich. Die Klasseneinteilung in den geochemischen Elementkarten beruht auf der Gesamtverteilung des betreffenden Elements in allen dargestellten Gesteinseinheiten. Die Perzentilwerte und die Art ihrer Verteilung bedingen die Anzahl und Abstufung der Gehaltsklassen. Jeder Gehaltsklasse wird eine Farbe zugeordnet:

- grün weist auf relativ niedrige,
- · gelb auf mittlere und
- rote Farben auf relativ hohe

Gehalte hin. Jede der 23 petrogeochemischen Einheiten erhält als Flächenfarbe die Farbe der Gehaltsklasse, in die ihr 50. bzw. 90. Perzentilwert fällt.

Interpretation: Die Auswertung des Analysenbestands nach den 23 petrogeochemischen Gesteinseinheiten führt im Gegensatz zu einer petrographisch orientierten Auswertung zu einem klar differenzierten Bild der geochemischen, geogenen Grundgehalte von Gesteinen in Baden-Württemberg. Trotz teilweise innerhalb kurzer Intervalle schwankender lithologischer Zusammensetzung lassen sich die petrogeochemischen Einheiten hinsichtlich ihres Elementinhaltes eindeutig beschreiben und voneinander trennen. Ein Ansatz nach petrographischer Zusammensetzung zeigt rasch, dass Gesteine einer Gesteinsart, z. B. Kalksteine oder Tonsteine, Gehalte eines bestimmten Elementes in der Bandbreite von "sehr gering" bis "sehr hoch" aufweisen können. Der lithologischen Gliederung liegt der Umstand zu Grunde, dass Bildungsprozess, -raum und -milieu wesentliche Bestimmungsfaktoren für die chemische Zusammensetzung einer Gesteinseinheit sind. Die Ähnlichkeit der genannten Faktoren für größere Gesteinseinheiten äußert sich in übereinstimmenden Analysenergebnissen auch für weiter entfernte, aber zur gleichen Einheit gehörende Proben und unterstreicht die Übertragbarkeit von punktbezogenen Einzelergebnissen in die Fläche. Die Vergleichbarkeit von Ergebnissen, die auf Proben aus verschiedenen Bundesländern, aber übereinstimmenden geologischen Einheiten bezogen sind, wurde schon von Lotze (1999) herausgestellt. Im Umkehrschluss sind Vergleiche mit anderen Bundesländern nur insoweit zulässig, als vergleichbare Gesteinseinheiten vorliegen.

Die dargestellten statistischen Kennwerte erlauben keinen direkten Vergleich mit Prüf-, Maßnahmen- oder Grenzwerten von gesetzlichen oder untergesetzlichen Regelwerken. Hierzu muss auf die Verteilung der Einzelwerte zurückgegriffen werden. Als Beispiel für einen solchen Vergleich sei das Element Arsen und der Grenzwert 15 mg/kg (= LAGA Z 0-Wert; LAGA: Bund-/Länder-Arbeitsgemeinschaft Abfall) ausgewählt. Der LAGA Z 0-Wert gibt die Untergrenze von Gehalten an, bis zu der ein unbeschränkter Einbau von Gesteinsmaterial möglich ist. Nachfolgende Tabelle zeigt die statistischen Kennwerte für Arsen, jedoch ergänzt um eine Spalte, die die Anzahl der Überschreitungen des Grenzwertes von 15 mg/kg in Prozent aller Analysen je Gesteinseinheit angibt.

Vergleich der Kennwerte für Arsen (in mg/kg) mit dem Grenzwert 15 mg/kg:

Quartär Quartär Junger Süßwasserkalk qk 16 7 1107 274 345 792 110 Lösssediment los 35 4 60 12 8,8 15 11 Quartärschichten (Kiese u. Sande) qs 112 2 76 6,6 8,4 12 4 Tertiär des Schichtstufenlandes 10R 10 4 27 19 7,4 25 22 Tertiär des Molassebeckens tMO+tLV 117 2 114 7,8 12 15 4 Tertiär des Molassebeckens tMO+tLV 117 2 114 7,8 12 15 4 Tertiäre Magmatite und Impaktigesteine tJm+tllK 9 2 7 4,2 1,3 5,4 4 Jura Jo 710 2 19 3,3 2,3 7 2 Mittelijura jn 19 2 81 22							KEOILI	TEOLETONOOI TOTOISIONI T		
Junger Súßwasserkalk	Geochemische Einheit	Kürzel		Minimum				P 90	Median (P 50)	> 15 in %
Lösssediment los 35 4 60 12 8,8 15 11 Quartärschichten (Kiese u. Sande) qs 112 2 76 6,6 8,4 12 4 Tertiär Tertiär des Schichtstufenlandes IOR 10 4 27 19 7,4 25 22 Tertiär des Molassebeckens IMO+ILV 117 2 114 7,8 12 15 4 Tertiär des Molassebeckens IMO+ILV 117 2 114 7,8 12 15 4 Tertiär Magmatite und Impaktgesteine Idm+tilk 9 2 7 4,2 1,3 5,4 4 Juster Magmatite und Impaktgesteine jo 710 2 19 3,3 2,3 7 2 Mittel und Oberkeuper jo 710 2 18 6,3 4,3 10 5 Untertigura ku 20 4 23 6,3 4,3 10 <th< td=""><td>Quartär</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Quartär									
Quartärschichten (Kiese u. Sande) qs 112 2 76 6,6 8,4 12 4 Tertiär Tertiär des Schichtstufenlandes 10R 10 4 27 19 7,4 25 22 Tertiär des Molassebeckens 1MO+tLV 117 2 114 7,8 12 15 4 Tertiäre Magmatite und Impaktgesteine Jun+tllK 9 2 7 4,2 1,3 5,4 4 Jure Magmatite und Impaktgesteine Jun+tllK 9 2 7 4,2 1,3 5,4 4 Jure Magmatite und Impaktgesteine Jun+tllK 9 2 19 3,3 2,3 7 2 Mittel Jura Jun 19 2 81 22 23 50 13 Untertieura Jun 24 9 32 16 5,1 22 16 Trias Mittel Jura Km+ko 377 2 48	Junger Süßwasserkalk	qk	16	7	1107	274	345	792	110	97
Tertiār	Lösssediment	los	35	4	60	12	8,8	15	11	9
Tertilar des Schichtstufenlandes tOR 10 4 27 19 7,4 25 22 Tertilar des Molassebeckens tMO+tLV 117 2 114 7,8 12 15 4 Tertilar des Molassebeckens tMO+tLV 117 2 114 7,8 12 15 4 Tertilar des Molassebeckens tMO+tLV 117 2 114 7,8 12 15 4 Tertilar des Molassebeckens tMO 18 2 3 3 4 4 Jertilar des Molassebeckens tMoter and the model of the m	Quartärschichten (Kiese u. Sande)	qs	112	2	76	6,6	8,4	12	4	8
Tertilâr des Molassebeckens tMO+tLV 117 2 114 7,8 12 15 4 Tertilâre Magmatite und Impaktgesteine tJm+tlK 9 2 7 4,2 1,3 5,4 4 Jura Oberjura jo 710 2 19 3,3 2,3 7 22 Mitteljura jm 19 2 81 22 23 50 13 Unterjura ju 24 9 32 16 5,1 22 16 Trias Mittel- und Oberkeuper km+ko 377 2 48 6,3 4,3 10 55 Unterkeuper ku 20 4 23 8,4 5,3 14 66 Oberer Muschelkalk mo 402 2 77 8,0 6,8 12 7 Mittlerer Muschelkalk mm 86 2 53 8,4 8,8 15 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 9 10 10 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 9 10 10 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 9 10 10 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Tertiär									
Terrilâre Magmatitie und Impaktgesteine tJm+tIK 9 2 7 4,2 1,3 5,4 4 Jura Doberjura	Tertiär des Schichtstufenlandes	tOR	10	4	27	19	7,4	25	22	83
Impaktgesteine tJm+tlK 9 2 7 4,2 1,3 5,4 4 Jura Oberjura jo 710 2 19 3,3 2,3 7 2 Mitteljura jm 19 2 81 22 23 50 13 Unterjura ju 24 9 32 16 5,1 22 16 Trias Mittel- und Oberkeuper km+ko 377 2 48 6,3 4,3 10 5 Unterkeuper ku 20 4 23 8,4 5,3 14 6 Oberer Muschelkalk mo 402 2 77 8,0 6,8 12 7 Mittlerer Muschelkalk mm 86 2 53 8,4 8,8 15 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 Oberer Buntsand	Tertiär des Molassebeckens	tMO+tLV	117	2	114	7,8	12	15	4	10
Oberjura jo 710 2 19 3,3 2,3 7 2 Mitteljura jm 19 2 81 22 23 50 13 Unterjura ju 24 9 32 16 5,1 22 16 Trias Wittel- und Oberkeuper km+ko 377 2 48 6,3 4,3 10 5 Unterkeuper ku 20 4 23 8,4 5,3 14 6 Oberer Muschelkalk mo 402 2 77 8,0 6,8 12 7 Mittlerer Muschelkalk mu 110 2 264 14 28 20 9 Oberer Buntsandstein su +sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5		tJm+tIK	9	2	7	4,2	1,3	5,4	4	0
Mitteljura jm 19 2 81 22 23 50 13 Unterjura ju 24 9 32 16 5,1 22 16 Trias Mittel- und Oberkeuper km+ko 377 2 48 6,3 4,3 10 55 Unterkeuper ku 20 4 23 8,4 5,3 14 66 Oberer Muschelkalk mo 402 2 77 8,0 6,8 12 7 Mittlerer Muschelkalk mm 86 2 53 8,4 8,8 15 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 Oberer Buntsandstein su+sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rotliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 44	Jura									
Unterjura ju 24 9 32 16 5,1 22 16 Trias Mittel- und Oberkeuper km+ko 377 2 48 6,3 4,3 10 5 Unterkeuper ku 20 4 23 8,4 5,3 14 6 Oberer Muschelkalk mo 402 2 77 8,0 6,8 12 7 Mittlerer Muschelkalk mm 86 2 53 8,4 8,8 15 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 Oberer Buntsandstein so 47 2 164 15 29 26 7 Unterer und Mittlerer Buntsandstein su+sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rotliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Oberjura	jo	710	2	19	3,3	2,3	7	2	< 1
Trias Mittel- und Oberkeuper km+ko 377 2 48 6,3 4,3 10 5 Unterkeuper ku 20 4 23 8,4 5,3 14 6 Oberer Muschelkalk mo 402 2 77 8,0 6,8 12 7 Mittlerer Muschelkalk mm 86 2 53 8,4 8,8 15 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 Oberer Buntsandstein so 47 2 164 15 29 26 7 Unterer und Mittlerer Buntsandstein su+sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rotliegend-Sedimente co+rS 32 4 81 32 38 <t< td=""><td>Mitteljura</td><td>jm</td><td>19</td><td>2</td><td>81</td><td>22</td><td>23</td><td>50</td><td>13</td><td>41</td></t<>	Mitteljura	jm	19	2	81	22	23	50	13	41
Mittel- und Oberkeuper km+ko 377 2 48 6,3 4,3 10 5 Unterkeuper ku 20 4 23 8,4 5,3 14 6 Oberer Muschelkalk mo 402 2 77 8,0 6,8 12 7 Mittlerer Muschelkalk mm 86 2 53 8,4 8,8 15 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 Oberer Buntsandstein so 47 2 164 15 29 26 7 Unterer und Mittlerer Buntsandstein su+sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rottlegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38	Unterjura	ju	24	9	32	16	5,1	22	16	53
Unterkeuper ku 20 4 23 8,4 5,3 14 6 Oberer Muschelkalk mo 402 2 77 8,0 6,8 12 7 Mittlerer Muschelkalk mm 86 2 53 8,4 8,8 15 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 Oberer Buntsandstein so 47 2 164 15 29 26 7 Unterer und Mittlerer Buntsandstein su+sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rottliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Trias									
Oberer Muschelkalk mo 402 2 77 8,0 6,8 12 7 Mittlerer Muschelkalk mm 86 2 53 8,4 8,8 15 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 Oberer Buntsandstein so 47 2 164 15 29 26 7 Unterer und Mittlerer Buntsandstein su+sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rotliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatitie rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Basisch-intermedläre Permokarbon-Magmatite GG 104 2 </td <td>Mittel- und Oberkeuper</td> <td>km+ko</td> <td>377</td> <td>2</td> <td>48</td> <td>6,3</td> <td>4,3</td> <td>10</td> <td>5</td> <td>3</td>	Mittel- und Oberkeuper	km+ko	377	2	48	6,3	4,3	10	5	3
Mittlerer Muschelkalk mm 86 2 53 8,4 8,8 15 7 Unterer Muschelkalk mu 110 2 264 14 28 20 9 Oberer Buntsandstein so 47 2 164 15 29 26 7 Unterer und Mittlerer Buntsandstein su+sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rotliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Gefaltetes Paläozoikum palg 57 2 1280 55 168 81 25 Kristallines Grundgebirge Basisch-inte	Unterkeuper	ku	20	4	23	8,4	5,3	14	6	9
Unterer Muschelkalk mu 110 2 264 14 28 20 9 Oberer Buntsandstein so 47 2 164 15 29 26 7 Unterer und Mittlerer Buntsandstein su+sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rottliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Gefaltetes Paläozoikum palg 57 2 1280 55 168 81 25 Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Oberer Muschelkalk	mo	402	2	77	8,0	6,8	12	7	6
Oberer Buntsandstein so 47 2 164 15 29 26 7 Unterer und Mittlerer Buntsandstein su+sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rotliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Gefaltetes Paläozoikum palg 57 2 1280 55 168 81 25 Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Mittlerer Muschelkalk	mm	86	2	53	8,4	8,8	15	7	10
Unterer und Mittlerer Buntsandstein su+sm 50 4 49 9,1 11 23 4 Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rotliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Gefaltetes Paläozoikum palg 57 2 1280 55 168 81 25 Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Unterer Muschelkalk	mu	110	2	264	14	28	20	9	23
Perm-Oberkarbon Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rotliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Gefaltetes Paläozoikum palg 57 2 1280 55 168 81 25 Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Oberer Buntsandstein	S0	47	2	164	15	29	26	7	27
Zechstein z 6 2 52 18 21 43 9,5 Karbon- und Rotliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Gefaltetes Paläozoikum palg 57 2 1280 55 168 81 25 Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Unterer und Mittlerer Buntsandstein	su+sm	50	4	49	9,1	11	23	4	18
Karbon- und Rotliegend-Sedimente co+rS 32 4 81 45 20 68 49 Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Gefaltetes Paläozoikum palg 57 2 1280 55 168 81 25 Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Perm-Oberkarbon									
Saure Permokarbon-Magmatite rM+cVK 38 2 181 32 38 54 20 Nichtkristallines Grundgebirge Gefaltetes Paläozoikum palg 57 2 1280 55 168 81 25 Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Zechstein	Z	6	2	52	18	21	43	9,5	50
Nichtkristallines Grundgebirge Gefaltetes Paläozoikum palg 57 2 1280 55 168 81 25 Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Karbon- und Rotliegend-Sedimente	co+rS	32	4	81	45	20	68	49	94
Gefaltetes Paläozoikum palg 57 2 1280 55 168 81 25 Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Saure Permokarbon-Magmatite	rM+cVK	38	2	181	32	38	54	20	65
Kristallines Grundgebirge Basisch-intermediäre Permokarbon-Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Nichtkristallines Grundgebirge									
Basisch-intermediäre Permokarbon- Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Gefaltetes Paläozoikum	palg	57	2	1280	55	168	81	25	67
Magmatite GG 104 2 419 24 51 64 5,5 Variskische Intrusiva GP 175 2 871 19 71 34 4	Kristallines Grundgebirge									
		GG	104	2	419	24	51	64	5,5	35
Migmatite und Gneise MI+gn 105 2 517 26 69 59 4	Variskische Intrusiva	GP	175	2	871	19	71	34	4	15
	Migmatite und Gneise	MI+gn	105	2	517	26	69	59	4	23
Alle Einheiten 2661 2 1280 Flächengewichteter Median 6,2	Alle Einheiten		2661	2	1280	Flächengew	richteter Me	dian	6,2	

Daraus wird ersichtlich, dass praktisch nur im Oberjura Überschreitungen dieses Grenzwertes nahezu ausgeschlossen werden können. Andererseits liegen bereits 15 % der Analysen der variskischen Intrusiva ("Granite") oder gar 65 % der gemessenen Werte aus den Rotliegend-Magmatiten über dem angenommenen Grenzwert. Auch Einheiten wie der Unterkeuper, deren Median und 90. Perzentilwert jeweils unter 15 mg/kg liegen, weisen, wie im Beispiel für Arsen, in 9 % der Fälle Grenzwertüberschreitungen auf. Es wird an dieser Stelle noch einmal darauf hingewiesen, dass mit den im vorliegenden Tabellenwerk dargestellten statistischen Kennwerten eine einzelfallbezogene Einstufung in Bezug auf Prüf-, Maßnahmen- und Grenzwertüberschreitungen nicht möglich ist.

Der 90. Perzentilwert kann nach bisheriger Erfahrung etwa als Obergrenze eines "typischen", weiträumig-diffus geltenden geogenen Grundgehalts verstanden werden. Bei den obersten 10 % der Werte muss davon ausgegangen werden, dass kleinräumig begrenzte oder auf geringmächtige Einzelhorizonte begrenzte Elementanreicherungen (Vererzungen) mit enthalten sind. Bei der Auswahl der Proben wurden solche aus bekannten Anreicherungshorizonten bewusst in einem ihrer Verbreitung entsprechenden Maße in die Auswertung mit einbezogen. Das Auftreten solcher Einzelsituationen lässt sich an hohen Maximalwerten ablesen. Auch diese zählen definitionsgemäß zum geogenen Grundgehalt.

Literatur

- Ad-hoc-AG Boden (2005b). Leitfaden zum Umrechnungsprogramm Methodenvergleich Gesamtgehalte Hauptund Spurenelemente. 518 S., Hannover.
- Alloway, B. (1999). Schwermetalle in Böden; Analytik, Konzentrationen, Wechselwirkungen. 540 S., Berlin, Heidelberg (Springer).
- Brinker, K. (1995). Schwermetallstatus der landwirtschaftlich genutzten Böden in Mecklenburg-Vorpommern. –
 Dipl.-Arb. Univ. Rostock, S. [unveröff.]
- DVWK (1996). Hydrogeochemische Stoffsysteme, Teil I. Schriften, 110, 324 S., Bonn.
- DVWK (1998). Hydrogeochemische Stoffsysteme, Teil II. Schriften, 117, 415 S., Bonn.
- Fauth, H., Hindel, R., Siewers, U. & Zinner, J. (1985). *Geochemischer Atlas Bundesrepublik Deutschland.*Verteilung von Schwermetallen in Wässern und Bachsedimenten. 79 S., Hannover (BGR Bundesanstalt für Geowissenschaften und Rohstoffe).
- Grupe, M. (1989). Schwermetallgehalte in Böden in Abhängigkeit vom Ausgangssubstrat. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 59/II, S. 895–896.
- Huot-Vezina, G., Boivin, R., Smirnoff, A. & Paradis, S. J. (2012). *GeoScaler: Generalization tool (with a supplementary user guide in French).* 2nd Edit., Geological Survey of Canada, Open File 6231, 82 S.
- Jahn, R., Stahr, K. & Zauner, G. (1992). *Gutachten zum geogenen Schwermetallbestand der Schichtenfolge des Stadtgebietes von Stuttgart.* Im Auftrag des Umweltamtes der Landeshauptstadt Stuttgart, 47 S., Hohenheim.
- Kunkel, R., Voigt, H.-J., Wendland, F. & Hannappel, S. (2004). Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland. – Schriften des Forschungszentrums Jülich, Reihe Umwelt/Environment, 47, 204 S., Jülich.
- LABO (2003). Hintergrundwerte für anorganische und organische Stoffe in Böden. 3. Aufl., 59 S.
 (Bund/Länderarbeitsgemeinschaft Bodenschutz), verfügbar unter http://www.labo-deutschland.de/pdf/LABO-HGW-Text.pdf.
- LfU (1994). Schwermetallgehalte in Böden aus verschiedenen Ausgangsgesteinen Baden-Württembergs. –
 Materialien zum Bodenschutz, Bd. 3, 21 S., Karlsruhe (Landesanstalt für Umweltschutz Baden-Württemberg).
- Lide, D. (2005). CRC Handbook of Chemistry and Physics. 85. Aufl., 2712 S., Boca Raton, Florida, USA (CRC Press).
- Lotze, T. (1999). Geochemische Grundlagen zur nachhaltigen Bewirtschaftung von Gesteinen in Baden-Württemberg. – Diss. TU Braunschweig, 231 S., Braunschweig.
- Martin, M. (2009). Geogene Grundgehalte (Hintergrundwerte) in den petrogeochemischen Einheiten von Baden-Württemberg. – LGRB-Informationen, 24, S. 1–98.
- Mederer, J., Hindel, R., Rosenberg, F., Linhard, E. & Martin, M. (1998). *UAG "Hintergrundwerte" der Ad-hoc-AG Geochemie Statusbericht Dezember 1996. –* Geologisches Jahrbuch, Reihe G, 6, S. 3 –130.
- Merian, E. (1984). *Metalle in der Umwelt.* 722 S., Weinheim (Chemie).
- NLfB (1999). Digitaler Atlas Hintergrundwerte Natürliche chemische Gehalte von Bachsedimenten, Böden, Gesteinen und Grundwasser in Niedersachsen und Bremen. – S., CD-ROM, Hannover (Niedersächsisches Landesamt für Bodenforschung).
- Plum, H., Dietze, G., Armbruster, V. & Wirsing, G. (2009a). Natürliche geogene Grundwasserbeschaffenheit in den hydrogeologischen Einheiten von Baden-Württemberg. – LGRB-Informationen, 23, S. 1–192, verfügbar unter https://produkte.lgrb-bw.de/docPool/c621_data.pdf.
- Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau (Hrsg.) (2015d). Geologische Grundkarte (GK-BW), Geodaten der Integrierten geowissenschaftlichen Landesaufnahme (GeoLa), Online seit 2015, kontinuierliche Aktualisierung. Verfügbar unter https://geoportal.lgrb-bw.de/produkt/dgk50.
- Rosenberg, F. & Sabel, K. J. (1996). Hintergrundgehalte umweltrelevanter Schwermetalle in Gesteinen und

oberflächennahem Untergrund Hessens. – Übersichtskarte 1 : 300 000, – S., Wiesbaden (Hessisches Landesamt für Bodenforschung).

- Salminen, R. (2005). Geochemical Atlas of Europe Geological Survey of Finland, Espoo, Finland. Verfügbar unter http://www.gtk.fi/publ/foregsatlas.
- Schaaf, R. (1982). *Luftbelastung durch Metallverbindungen aus Produkten* Texte 38/1982, Berlin (Umweltbundesamt).
- Scholl, W. (1959). Spurenelementuntersuchung in Gesteinen, Böden und Pflanzen des Schwarzwaldes unter besonderer Berücksichtigung des Kobalts. – Diss. TH Karlsruhe, 193 S., Karlsruhe.
- Schuff, J. (2019). Verfahren zur automatisierten Generalisierung flächenhafter Geofachdaten. Masterarbeit im Rahmen des Universitätslehrganges "Geographical Information Science & Systems" (UNIGIS MSc) am Interfakultären Fachbereich für GeoInformatik (Z_GIS) der Paris Lodron-Universität Salzburg, 105 S.
- Stahr, K. (1992). Geogene Schwermetalle in Gesteinen und Böden der südwestdeutschen Schichtstufenlandschaft – Abschlußbericht zum PWAB Forschungsprojekt PW 86013. – Projekt Wasser Abfall Boden; Projekträger Forschungszentrum Karlsruhe, 103 S., Karlsruhe.
- Sächsisches Landesamt für Umwelt und Geologie (1996). *Geochemischer Atlas des Freistaates Sachsen. Teil 1, Spurenelementgehalte in Gesteinen.* 37 S., Radebeul.
- UM Umweltministerium Baden-Württemberg (1995a). Bodenzustandsbericht Kehl Schadstoffgehalte der Böden. 58 S., Karlsruhe (Landesanstalt für Umweltschutz Baden-Württemberg, Gesellschaft für Umweltmessungen und Umwelterhebungen mbH).
- Viereck-Götte, L., Brand, P. & Siepermann, M. (1997). Literaturstudie: Natürliche Grundgehalte von bodenrelevanten Metallen in Festgesteinen in NRW. – Endbericht im Auftrag des Landesumweltamtes Nordrhein-Westfalen, – S.
- Walk, H. (1982). Die Gehalte der Schwermetalle Cd, Tl, Pb, Bi und weiterer Spurenelemente in natürlichen Böden und ihren Ausgangsgesteinen Südwestdeutschlands. Diss. TH Karlsruhe, 170 S., Karlsruhe.

Datenschutz

Cookie-Einstellungen

<u>Barrierefreiheit</u>