

Ingenieurgeologie · Massenbewegungen · Murgangähnliche Ereignisse (Fließen) · Sturzflutereignis bei Braunsbach im Mai 2016

Sturzflutereignis bei Braunsbach im Mai 2016

Einführung

Am 29. Mai 2016 führten Extremniederschläge zu sehr hohen Oberflächenabflüssen, welche von der Hochfläche oberhalb der Ortslage von Braunsbach (Landkreis Schwäbisch Hall) durch die tief eingeschnittene Klinge des Orlacher Baches und dessen Seitenklingen (Kräuchelbach, Wolfsklinge) sowie des Schlossbaches strömten. Die herabströmenden Wassermassen sowie die dabei mitgeführte Geschiebe- und Schwemmholzfracht haben die Ortslage von Braunsbach extrem in Mitleidenschaft gezogen und führten dort, wie z. T. auch in Nachbargemeinden, zu gravierenden Schäden an Gebäuden und Infrastruktur.

Übersichtsgrafik mit betroffenem Schadensbereich (rot)

Morphologie und Geologie

Die Einzugsgebiete des Orlacher Baches sowie des Schlossbaches nehmen eine Gesamtfläche von ca. 6,4 km² ein, wobei der überwiegende Anteil durch den Plateau-Bereich (ca. 75–80 %) auf der Hochfläche eingenommen wird.

Die Bachläufe führen im Anschluss an die Hochfläche jeweils durch tief eingeschnittene Klingen, welche bis an die bebaute Ortslage von Braunsbach heranreichen. Die Bachläufe durchqueren anschließend in teils verbautem Gerinne, teils auch in Verdolungsstrecken die Ortslage und münden schließlich in den Kocher.

Das natürliche Sohlgefälle des Orlacher Baches beträgt ca. 6–10 % und steigt in den Seitenklingen auf teilweise über 30 % an.

Die Bachklinge des Orlacher Baches sowie dessen Seitenklinge Kräuchelbach wurden im Gefolge historisch belegter Hochwasserschäden aus dem Jahre 1902 mit einer Wildbachverbauung durch Tiroler Wasserbaufachleute befestigt. Hierzu wurden in Handarbeit Sohlpanzerungen aus behauenen Muschelkalkquadern, stellenweise Geröllfänge sowie einzelne Überfallbauwerke hergestellt.

Gegenüber dem Orlacher Bach weist die Klinge des Schlossbaches mit einem Gefälle von bis zu ca. 25 % ein deutlich steileres Gerinne auf, welches zudem unmittelbar in den besiedelten Bereich hineinführt.

Die Hochfläche im Einzugsgebiet des Orlacher Baches und dessen Zuläufe werden aus den Gesteinen der Erfurt-Formation (Unterkeuper) gebildet, die in variabler Mächtigkeit von Lösslehm überdeckt sind. In den nach Westen zum Kocher hin entwässernden, mitunter schroff eingetieften Bachklingen des Orlacher Baches und des Schlossbaches (beide Gemeinde Braunsbach) sind die unterlagernden Gesteinsabfolgen des Unteren, Mittleren und Oberen Muschelkalks aufgeschlossen. Die Ausstriche einzelner härterer Gesteinsbänke bilden in den Bachklingen natürliche Bachabstürze ("Wasserfallbänke"). Dies ist insbesondere im oberen Abschnitt der Bachläufe der Fall, in denen die Gesteine des Oberen Muschelkalks anstehen. Die ursprünglich salinaren Gesteine des Mittleren Muschelkalks sind im Bereich der Bachklingen ausgelaugt und verstürzt, nur unter den Hochflächen steht unter den Auslaugungsrückständen teilweise noch Sulfatgestein an. In Folge der Verkarstung der Muschelkalk-Gesteine finden sich auf der Hochfläche, vor allem im Grenzbereich Oberer Muschelkalk/Erfurt-Formation, zahlreiche Dolinen.

Auf den Hängen lagern Hangablagerungen (<u>Hangschutt</u>/Hanglehm). Es handelt sich dabei um steinigen, braunen bis braungrauen Lehm sowie um abgeglittene Verwitterungsmassen höher gelegener Schichten. Die Hangablagerungen erreichen am Hangfuß Mächtigkeiten von bis zu 5 m. In steileren Hanglagen reduziert sich die Mächtigkeit dieser Lockergesteine zusehends, wobei die Lockergesteine ihrem Inneren Reibungswinkel entsprechend nur bis zu einer Grenzneigung von etwa 35° standfest sein können.

In den Hangablagerungen sowie teilweise auch in den unterlagernden aufgewitterten Muschelkalkgesteinen kommt es in den Bachklingen immer wieder durch die den Hang unterschneidende oder anschneidende Erosion zur Bildung von Böschungsrutschungen unterschiedlichen Alters.

In der Ingenieurgeologischen Gefahrenhinweiskarte Baden-Württembergs (IGHK50) wie auch in der Geologischen Karte GK 25 des betreffenden Gebietes sind verschiedene Hinweisflächen auf Massenbewegungen (Rutschungen) markiert. Die <u>Rutschmassen</u> befinden sich oft in labilem Gleichgewicht, können leicht durch erodierende Prozesse bzw. Hanganschnitte reaktiviert werden und damit das Bachbett blockieren.

Am Ausgang der Bachklingen in das Kochertal haben sich mächtige Geröllfächersedimente (<u>Schwemmschutt</u>) als Zeugen historischer Erosions- und Massenbewegungsereignisse in die Kocherebene abgelagert, die sich mit den jungen Talablagerungen des Kochers verzahnen und die den Untergrund der historischen Ortslage von Braunsbach bilden. Die Geröllfächersedimente bestehen überwiegend aus Kalkstein-Geröllen (Oberer/Unterer Muschelkalk). Sandstein- und Dolomitstein-Gerölle (Unterkeuper, Mittlerer Muschelkalk) kommen nur untergeordnet vor.

LGRBwissen

Das Schadensereignis vom 29. Mai 2016

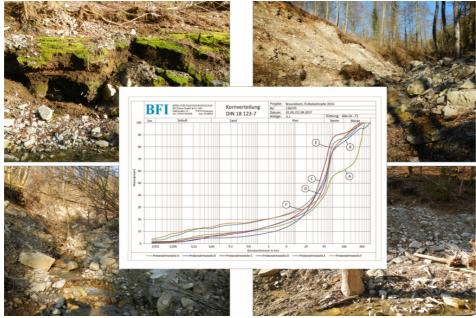
Bei dem Unwetter fielen im Raum Braunsbach innerhalb weniger Stunden 105 mm Niederschlag, welcher sich aus der Hochebene in den Klingen des Orlacher Baches sowie des Schlossbaches sammelte und somit, entsprechend der vorliegenden Rückrechnungen aus Pegelmessungen sowie hydrogeologischen Modellierungen, Reinwasserabflussmengen von ca. 40-60 m³/s ergab. Aufgrund der natürlichen, morphologisch beengten Situation in den Klingen, entwickelte diese Wassermenge einen stark erosiven und turbulenten Abfluss. Das sturzartig abfließende Wasser riss Lockermaterial und Schwemmholz sowie gröberes Blockmaterial mit. Einzelne Verklausungen durch Schwemmholz bzw. stellenweise auch Bachbettverlegungen durch nachrutschende Hangbereiche führten stellenweise zu einem Aufstau des Materials und einem anschließenden Bruch bei Überlast, was zu einem pulsierenden Verhalten des Abflusses (Schwallwasserereignisse) führte und dessen erosive Kraft verstärkte.

Ablagerungen des "Sturzflutereignisses" in der Ortslage von Braunsbach (Foto: LRA Schwäbisch Hall. 06/2016)

In der Ortslage von Braunsbach wurden so letztendlich ca. 49 000 m³ Feststoff abgelagert, welche neben den abgetragenen Feststoffen aus den Bachklingen auch Schrott und Schutt aus der stark beschädigten Infrastruktur bzw. aus der Ortslage von Braunsbach beinhalteten. Zudem wurde festgestellt, dass etwa 80 % des eingebauten Wildbachverbaus im Laufe der Zeit bzw. durch das Ereignis zerstört und abgetragen wurde.

Intakter Tiroler Wildbachverbau von ca. 1903 im Vergleich zum zerstörten Erscheinungsbild nach dem Ereignis vom 29.05.2019 (Foto: Straßen-und Wasserbauamt, erhalten vom LRA Schwäbisch Hall)

LGRBwissen


Sicherungsmaßnahmen

Zur Einschätzung der genauen Prozessabläufe innerhalb der Bachklingen wurden diese durch sachverständige Personen begangen. Hierbei wurde die zerstörerische Kraft des Wassers offensichtlich. Im Bereich der gesamten Bachklingen zeigten sich deutliche Spuren des Flutereignisses. Hierzu zählen u. a. geschälte oder vollständig herausgerissene Bäume, größere bewegte Blöcke ("Stumme Zeugen") sowie Fließ- und Schwallspuren. Die oberhalb der Bachläufe angrenzenden Hangbereiche wurden stellenweise unterschnitten, wodurch Böschungen abrutschten und zum Teil Bachabschnitte verlegt wurden. Der noch vorhandene Wildbachverbau wurde bereichsweise vollständig zerstört und erodiert (s. o.).

In der folgenden Abbildung ist das an verschiedenen Entnahmestellen analysierte Korngrößenspektrum der Schutt- und Geröllmassen dargestellt.

Geschälte Bäume aufgrund der Auswirkung der Sturzflut

Abgelagerte Schutt- und Geröllmassen sowie Summenkurven der Kornverteilung (Grafik Kornverteilungskurven: BFI Zeiser GmbH & Co. KG, Ellwangen)

LGRBwissen

Verklausung durch Totholz im Bereich des Bachbettes

Oberste Priorität bei den Aufräumarbeiten in den Bachbetten nach dem Ereignis stellte die Entfernung von Verklausungen durch Totholz etc. (Vermeidung von Verklausungsbrüchen). sowie die Sanierung und Stabilisierung der instabilen Böschungsabschnitte dar.

Die Stabilisierung der Böschungen erfolgte durch den Einbau von Sickerstützscheiben und Reibungsfüßen, welche zum einen der geordneten Entwässerung und zum anderen der Stabilisierung gegen ein erneutes Nachrutschen der Böschungsabschnitte dienen. Im darauf folgenden Schritt wurden anhand der Geländebegehungen durch Sachverständige des Wasserbaus konkrete Bachausbaumaßnahmen zur Minimierung einer weiteren starken Erosion bei hohen Wasserabflüssen geplant und umgesetzt. Diese sahen in besonders gefährdeten Abschnitten Sohlbefestigungen aus einbetonierten

Flussbausteinen, Querriegel, Überfälle sowie darunter angeordnete Tosbecken vor. Zudem wurden zerstörte oder stark beschädigte Durchlässe an Forstwegen bzw. im Dorfbereich erneuert. All diese Maßnahmen reichen alleine jedoch nicht aus, um bei einem neuerlichen Großereignis mitgeführte Schwemmmassen zu beherrschen. Aus diesem Grund wurden vorab am Ausgang des Orlacher Baches und des Schlossbaches am Übergang zur Ortslage statische Geröllfänge errichtet, welche im Schadenfall Schwemmmassen zurückhalten können.

Zur genauen Evaluierung von weiteren notwendigen Sicherungsmaßnahmen wurde auf Basis der vor Ort gewonnenen Geländeaufnahmen sowie der vorliegenden morphologischen, geologischen und hydrologischen Daten eine umfangreiche Modellierung der Geschiebelieferung (Berger, 2019) durchgeführt. Anhand des erhaltenen Modells lassen sich Prozessabläufe und transportierte Schwemmmassen hinreichend abschätzen. Wie die Auswertung dieser Daten ergab, ist ein zusätzliches Rückhaltepotential notwendig, um die Ortslage von Braunsbach oder der Nachbargemeinden ausreichend zu schützen. Dies bedeutet, dass zusätzliche Geröllfänge errichtet werden sollten.

Anhand der Modellierung wurden geeignete Standorte für weitere Geröllfänge ermittelt, die ein hinreichend hohes Rückhaltepotential bieten. Als zusätzliche Geröllfänge für das Bachbett wurden dynamischen Netzsperren empfohlen, da diese die hohen Anpralllasten des Schwemmmassenstroms besser aufnehmen können und darüber hinaus eine Entwässerung des zurückgehaltenen Schwemmmaterials ermöglichen.

Bei der Ausbildung dynamischer Sperren soll für den Normalwasserabfluss ein freier Basisdurchlass sowie ein Niedrigwassergerinne berücksichtigt werden, um eine unerwünschte Füllung der Sperre mit kleinerem Schwemmholz zu verhindern und den normalen Geschiebetransport im Bachbett nicht zu behindern. Dies dient u. a. auch der künftigen Wartungsfreundlichkeit an den Sperrenstandorten, was jedoch turnusmäßige Maßnahmen (Beseitigung von Totholz, Stabilisierungsmaßnahmen im Böschungsbereich, Ertüchtigungen im Bereich des Bachausbaues) nicht ersetzen kann.

Nachfolgend sind die wichtigsten Punkte des Sturzflutereignises bei Braunsbach vom 29. Mai 2016 tabellarisch aufgelistet:

Stammdaten:

Objekt-ID	6724_Fl00001	
Objektname	Sturzflut bei Braunsbach im Mai 2016	
Lokalität	Braunsbach	
Gemeinde	Braunsbach	
Stadt-/Landkreis	Schwäbisch Hall	
TK25-Nr.	6724	
TK25-Name	Künzelsau	
Datengrundlage	Geländebegehung, DGM, GeoLa, Fachgutachten	
Lage-Bezugspunkt	Höchster Punkt des Abrissbereichs	
Ostwert	559030	
Nordwert	5451570	
Koordinatenreferenzsystem	ETRS89/UTM32	
Koordinatenfindung	GPS	
Höhe [m ü. NHN]	403	
Höhenermittlung	Karte	

Allgemeine Fachdaten:

Entstehungszeitraum	2016	
Geländenutzung während der Entstehung	Wald, Wohngebiet, Feldweg, Forststraße	
Schäden	Straßenschäden, Gebäudeschäden, Schäden an beweglichen Gütern, Schäden an Wasserleitungen, Schäden an Abwasserleitung, Schäden an fließenden Gewässern, Schäden an Stromleitungen	

Spezielle Fachdaten Massenbewegungen:

Primär-/Fol	lgeereignis	Primärereignis	
Prozess der Hauptbewegung		Fließprozess, Sturzflut (Murgang)	
Max. Länge [m]		ca. 2400	
Max.	Abrissbereich	k. A.	
Breite [m]	Transportbereich	ca. 5–35	
	Ablagerungsbereich	bis ca. 150	
Betroffene Fläche [m²]		ca. 190 000	
Max.	Abrissbereich	k. A.	
Mächtig- keit [m]	Transportbereich	ca. 4	
	Ablagerungsbereich	ca. 3	
Fläche des Abrissbereiches [m²]		k. A.	
Kubatur der Abrissmasse [m³]		ca. 49 000	
Höchster Punkt des Abrissbereiches [m ü. NHN]		k. A.	
Höchster P	unkt des Ablagerungsbereiches	ca. 390	

[m ü. NHN]				
Max. Höhenunterschied zwischen Abrissbereich und Top des Ablagerungsbereiches [m]		k. A.		
Tiefster Punkt des Ablagerungsbereiches [m ü. NHN]		ca. 244		
Max. Höhenunterschied (H) zwischen höchstem Punkt des Abrissbereiches und tiefstem Punkt des Ablagerungsbereiches [m]		ca. 182		
Exposition zwischen höchstem und tiefstem Punkt des Ereignisses [°]		225		
Durchschnittliche Hangneigung zwischen höchstem und tiefstem Punkt des Ereignisses [°]		6–10		
Hang-	Abrissbereich	k. A.		
neigung [°]	Transportbereich	6–10		
Ablagerungsbereich		3		
Ursache		geogen		
Auslöser		geogen		
Geologie		Stratigraphie	Petrographie	
		Erfurt-Formation (kuE)	Dolomitstein, Tonstein, (Sandstein)	
		Oberer Muschelkalk (mo)	Kalkstein, Dolomitstein, (Tonmergelstein)	
		Mittlerer Muschelkalk (mm)	Schluffstein, Gips-Anhydrit, (Salzgestein, Dolomitstein, Tonstein, Kalkstein)	
		Karlstadt-Formation (mmK)	Dolomitstein, Kalkstein, Tonmergelstein, Gips	
		Unterer Muschelkalk (mu)	Kalkstein, Tonmergelstein, Dolomitstein	
		Holozäne Abschwemmmassen (qhz)	Schluff, Ton , kiesig, sandig, tonig	
Sicherungs	smaßnahmen	Teilausbau des Baches mit Sohlbefestigungen, Querriegeln, Überfällen sowie Tosbecken und Instandhaltung der Bachklingen, Aufbau von Geröllfängen/-sperren (dynamische Netzsperren)		
Sonstige Anmerkungen		Wildbachverbau, Verklausun	gen, Böschungsanbrüche	

Literatur

• Berger, C. (2019). Einschätzung Geschiebelieferung und Massnahmen, Bericht zur Gemeinde Braunsbach. Bern, CH (geo7 AG, Geowissenschaftliches Büro).

Datenschutz

Cookie-Einstellungen

Barrierefreiheit

Baden-Württemberg REGIERUNGSPRÄSIDIUM FREIBURG

Quell-URL (zuletzt geändert am 28.05.21 - 13:08): https://lgrbwissen.lgrb-

 $\underline{bw.de/ingenieurgeologie/massenbewegungen/murgangaehnliche-ereignisse-fliessen/sturzflutereignis-bei-braunsbach-immai-2016}$