

Geologie · Schichtenfolge · Quartär · Verwitterungs-/ Umlagerungsbildung · Quartäre Hohlraumfüllung

Quartäre Hohlraumfüllung

Lithostratigraphische Untergruppe

Übergeordnete Einheit

Verwitterungs-/Umlagerungsbildung

Verbreitung in Baden-Württemberg, Landschaftsbild

Höhlen-, Spalten- und Dolinenfüllungen sind im Wesentlichen auf die Karstgebiete des Muschelkalks und des Oberjuras beschränkt. Seltener stehen sie in Verbindung mit Gipskarst und Gipsauslaugung in den Grundgipsschichten des Keupers. Besonders die Höhlensedimente der Schwäbischen Alb sind durch die Funde der weltweit ältesten plastischen Kunstwerke der Menschheitsgeschichte von besonderer Bedeutung.

Lithologie, Abgrenzung, Untereinheiten

Quartäre Karst-/Höhlensedimente setzen sich aus in überdeckten Karsthohlräumen abgelagerten Sedimenten, überwiegend Schluff und Ton, sowie Sand, Kies, umgelagerter Verwitterungslehm, Löss oder Lösslehm, zusammen. Ebenfalls können von den Hohlraumwänden gefallene Steine und Blöcke auftreten. Sinterbildungen (mineralogische Bildungen aus wässrigen Lösungen) können vielfältige Formen von Tropfsteinen wie Stalaktiten, Stalagmiten, Sinterröhrchen oder Sinterfahnen annehmen. Das Hauptsediment wird häufig von Höhlenlehm, teilweise in Wechsellagerung mit Schuttlagen, gebildet. Die **Dolinenfüllungen** unterscheiden sich von den Karst- und Höhlensedimenten insbesondere in ihrer Entstehung, da diese unmittelbar an der Erdoberfläche über dem Senkungstrichter einer Doline oder eines Erdfalls entstanden sind (Geyer et al., 2011). Umgelagerte Lockersedimente können sich auch als **Spaltenfüllung** in korrosiv erweiterten Spalten sammeln, zum Teil sind diese sekundär (meist karbonatisch) verfestigt und können Bruchstücke des umliegenden Gesteins enthalten, häufig auch Bohnerz.

Anhand der Zusammensetzung können insbesondere auf der Schwäbischen Alb die quartären Hohlraumfüllungen des Pleistozäns, die meist kalkig, grau, hellbraun oder gelb ausgeprägt sind, von den kalkfreien, tertiären rotbraunen Tonen und gelben bis weißen Sanden der Bohnerz-Formation unterschieden werden (Geyer et al., 2011).

Mächtigkeit

Je nach Größe der Hohlräume variiert die Mächtigkeit der Füllung beträchtlich. In Höhlen können Verstürze von Steinen und Blöcken einen großen Raum einnehmen, Höhlenbäche können über große Entfernungen Sedimente transportieren.

Alterseinstufung

Mit Hilfe von Uran-Thorium-Datierungen an Tropfsteinen konnte das Alter vieler Höhlen der Schwäbischen Alb ins Pleistozän datiert werden. Pollenanalytische Untersuchungen von Hohlraumfüllungen belegen ebenfalls das pleistozäne Alter und lassen eine genauere Einstufung zu. Darüber hinaus kann eine Datierung auch über Wirbeltierreste erfolgen. Bekannt sind beispielsweise Skelettreste von Höhlenbären aus würmzeitlichen Höhlensedimenten der Schwäbischen Alb wie aus der Bärenhöhle bei Sonnenbühl-Erpfingen. In einer Höhle im Oberen Muschelkalk bei Jagsthausen wurden Knochenreste von Höhlenlöwe und Höhlenbär gefunden und ins Cromer gestellt. Säugetierreste im Heppenloch bei Lenningen-Gutenberg konnten ins Holstein datiert werden. Nach ihrer Fossilfüllung weisen die meisten Dolinenfüllungen ein spätpleistozänes bis holozänes Alter auf (Geyer et al., 2011).

Weiterführende Links zum Thema

- Schauhöhlen auf der Schwäbischen Alb
- Landesverband für Höhlen- und Karstforschung Baden-Württemberg

Literatur

• Geyer, M., Nitsch, E. & Simon, T. (2011). *Geologie von Baden-Württemberg*. 5. völlig neu bearb. Aufl., 627 S., Stuttgart (Schweizerbart).

Datenschutz

Cookie-Einstellungen

Barrierefreiheit

Quell-URL (zuletzt geändert am 24.10.23 - 12:39):https://lgrbwissen.lgrb-

bw.de/geologie/schichtenfolge/quartaer/verwitterungs-umlagerungsbildung/quartaere-hohlraumfuellung